Home
Class 12
MATHS
If |(cos theta,-1,1),(cos2 theta,4,3),(2...

If `|(cos theta,-1,1),(cos2 theta,4,3),(2,7,7)|=0`, then the number of values of `theta` in `[0, 1pi]` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given by the determinant condition \(|(cos \theta, -1, 1), (cos 2\theta, 4, 3), (2, 7, 7)| = 0\), we will follow these steps: ### Step 1: Calculate the Determinant The determinant of a 3x3 matrix can be calculated using the formula: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \begin{vmatrix} \cos \theta & -1 & 1 \\ \cos 2\theta & 4 & 3 \\ 2 & 7 & 7 \end{vmatrix} \] We can expand this determinant: \[ D = \cos \theta \begin{vmatrix} 4 & 3 \\ 7 & 7 \end{vmatrix} - (-1) \begin{vmatrix} \cos 2\theta & 3 \\ 2 & 7 \end{vmatrix} + 1 \begin{vmatrix} \cos 2\theta & 4 \\ 2 & 7 \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 4 & 3 \\ 7 & 7 \end{vmatrix} = (4 \cdot 7) - (3 \cdot 7) = 28 - 21 = 7\) 2. \(\begin{vmatrix} \cos 2\theta & 3 \\ 2 & 7 \end{vmatrix} = (\cos 2\theta \cdot 7) - (3 \cdot 2) = 7\cos 2\theta - 6\) 3. \(\begin{vmatrix} \cos 2\theta & 4 \\ 2 & 7 \end{vmatrix} = (\cos 2\theta \cdot 7) - (4 \cdot 2) = 7\cos 2\theta - 8\) ### Step 3: Substitute Back into the Determinant Substituting these back into the determinant expression: \[ D = \cos \theta \cdot 7 + (7\cos 2\theta - 6) + (7\cos 2\theta - 8) \] Combine like terms: \[ D = 7\cos \theta + 14\cos 2\theta - 14 \] ### Step 4: Set the Determinant to Zero Setting the determinant equal to zero: \[ 7\cos \theta + 14\cos 2\theta - 14 = 0 \] Dividing through by 7 gives: \[ \cos \theta + 2\cos 2\theta - 2 = 0 \] ### Step 5: Use the Cosine Double Angle Identity Using the identity \(\cos 2\theta = 2\cos^2 \theta - 1\): \[ \cos \theta + 2(2\cos^2 \theta - 1) - 2 = 0 \] This simplifies to: \[ \cos \theta + 4\cos^2 \theta - 2 - 2 = 0 \] Thus: \[ 4\cos^2 \theta + \cos \theta - 4 = 0 \] ### Step 6: Solve the Quadratic Equation Let \(x = \cos \theta\): \[ 4x^2 + x - 4 = 0 \] Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 4 \cdot (-4)}}{2 \cdot 4} = \frac{-1 \pm \sqrt{1 + 64}}{8} = \frac{-1 \pm \sqrt{65}}{8} \] ### Step 7: Find the Values of \(\theta\) The solutions for \(x = \cos \theta\) are: 1. \(x_1 = \frac{-1 + \sqrt{65}}{8}\) 2. \(x_2 = \frac{-1 - \sqrt{65}}{8}\) ### Step 8: Determine Validity of Solutions 1. For \(x_1\), check if \(-1 \leq x_1 \leq 1\): - Calculate \(\sqrt{65} \approx 8.06\), so \(x_1 \approx \frac{7.06}{8} \approx 0.8825\) (valid). 2. For \(x_2\), since \(\sqrt{65} > 1\), \(x_2\) is negative and less than -1 (invalid). ### Step 9: Count the Values of \(\theta\) Since \(x_1\) is valid, we find the angles: \[ \theta = \cos^{-1}(x_1) \quad \text{and} \quad \theta = 2\pi - \cos^{-1}(x_1) \] Both angles are within the interval \([0, \pi]\). ### Final Answer Thus, the number of values of \(\theta\) in the interval \([0, \pi]\) is **2**. ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 45

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 47

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If |[cos theta,-1,1],[cos2 theta,4,3],[2,7,7]|=0 then the number of values of theta in [0,2 pi]

If the points (-2, 0), (-1,(1)/(sqrt(3))) and (cos theta, sin theta) are collinear, then the number of value of theta in [0, 2pi] is

If sin^2 theta = 1+cos^6 theta then number of values of theta in range (0, 2pi) is

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )

If the points (-2,0),(-1,(1)/(sqrt(3))) and (cos theta,sin theta) are collinear then the number of value of theta is :

If 5cos2 theta+2cos^(2)((theta)/(2))+1=0-pi

If cos theta=-(1)/(2) and pi

NTA MOCK TESTS-NTA JEE MOCK TEST 46-MATHEMATICS
  1. The value of lim(xrarr0)(secx+tanx)^(1)/(x) is equal to

    Text Solution

    |

  2. The minimum value of the function f(x)=(tanx)/(3+2tanx), AA x in [0, (...

    Text Solution

    |

  3. The solution of the differential equation y(sin^(2)x)dy+(sinxcosx)y^(2...

    Text Solution

    |

  4. The negation of (~p ^^ q) vv (p ^^ ~ q) is

    Text Solution

    |

  5. If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):} (where [...

    Text Solution

    |

  6. If int(dx)/(x^(2)+x)=ln|f(x)|+C (where C is the constant of integratio...

    Text Solution

    |

  7. Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-h...

    Text Solution

    |

  8. The chords passing through (2, 1) intersect the hyperbola (x^(2))/(16)...

    Text Solution

    |

  9. If |(cos theta,-1,1),(cos2 theta,4,3),(2,7,7)|=0, then the number of v...

    Text Solution

    |

  10. A box contains x red balls and 10 black balls. 3 balls are drawn one b...

    Text Solution

    |

  11. The equation of the external bisector of angleBAC" to "DeltaABC with v...

    Text Solution

    |

  12. Chord joining two distinct point P(a, 4b) and Q(c, -(16)/(b)) (both ar...

    Text Solution

    |

  13. A plane P = 0 passing through the point (1, 1, 1) is perpendicular to ...

    Text Solution

    |

  14. Let the complex numbers Z(1), Z(2) and Z(3) are the vertices A, B and ...

    Text Solution

    |

  15. Let A be the centre of the circle x^(2)+y^(2)-2x-4y-20=0. If the tange...

    Text Solution

    |

  16. If the coefficient of x^(6) in the expansion of (2+x)^(3)(3+x)^(2)(5+x...

    Text Solution

    |

  17. The maximum value of x that satisfies the equation sin^(-1)((2sqrt(15)...

    Text Solution

    |

  18. The number of all possible symmetric matrices of order 3xx3 with each ...

    Text Solution

    |

  19. The mean of 40 observations 20 and their standard deviation is 5. If t...

    Text Solution

    |

  20. If I(n)=(d^(n))/(dx^(n))(x^(n)lnx), then the value of (1)/(50)(I(7)-7I...

    Text Solution

    |