Home
Class 12
MATHS
If I(n)=(d^(n))/(dx^(n))(x^(n)lnx), then...

If `I_(n)=(d^(n))/(dx^(n))(x^(n)lnx)`, then the value of `(1)/(50)(I_(7)-7I_(6))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( I_n = \frac{d^n}{dx^n} (x^n \ln x) \) and then find the value of \( \frac{1}{50}(I_7 - 7I_6) \). ### Step-by-Step Solution: 1. **Understanding \( I_n \)**: \[ I_n = \frac{d^n}{dx^n} (x^n \ln x) \] This represents the \( n \)-th derivative of the function \( x^n \ln x \). 2. **Using the Leibniz Rule**: We can apply the Leibniz rule for differentiation of a product: \[ \frac{d^n}{dx^n}(uv) = \sum_{k=0}^{n} \binom{n}{k} \frac{d^{n-k}}{dx^{n-k}}(u) \frac{d^k}{dx^k}(v) \] Here, let \( u = x^n \) and \( v = \ln x \). 3. **Calculating \( \frac{d^k}{dx^k}(\ln x) \)**: The \( k \)-th derivative of \( \ln x \) can be computed using the formula: \[ \frac{d^k}{dx^k}(\ln x) = \frac{(-1)^{k-1}(k-1)!}{x^k} \] for \( k \geq 1 \), and \( \frac{d^0}{dx^0}(\ln x) = \ln x \). 4. **Calculating \( \frac{d^{n-k}}{dx^{n-k}}(x^n) \)**: The \( (n-k) \)-th derivative of \( x^n \) is: \[ \frac{d^{n-k}}{dx^{n-k}}(x^n) = \frac{n!}{(n-k)!} x^{n-k} \] 5. **Combining Results**: Using the Leibniz rule: \[ I_n = \sum_{k=0}^{n} \binom{n}{k} \frac{n!}{(n-k)!} x^{n-k} \frac{(-1)^{k-1}(k-1)!}{x^k} \] Simplifying this gives: \[ I_n = n! \sum_{k=1}^{n} \frac{(-1)^{k-1}}{(n-k)!} \cdot \frac{1}{x} = n! \cdot \frac{1}{x} \sum_{j=0}^{n-1} \frac{(-1)^{j}}{j!} \] where \( j = k-1 \). 6. **Finding \( I_7 \) and \( I_6 \)**: From the pattern, we can derive: \[ I_n = n! \left( \sum_{j=0}^{n-1} \frac{(-1)^j}{j!} \right) \] Therefore: \[ I_7 = 7! \cdot \left( \sum_{j=0}^{6} \frac{(-1)^j}{j!} \right) \] \[ I_6 = 6! \cdot \left( \sum_{j=0}^{5} \frac{(-1)^j}{j!} \right) \] 7. **Calculating \( I_7 - 7I_6 \)**: \[ I_7 - 7I_6 = 7! \left( \sum_{j=0}^{6} \frac{(-1)^j}{j!} \right) - 7 \cdot 6! \left( \sum_{j=0}^{5} \frac{(-1)^j}{j!} \right) \] This simplifies to: \[ I_7 - 7I_6 = 7! \cdot \frac{(-1)^6}{6!} = 7! \cdot \frac{1}{720} = 5040 \cdot \frac{1}{720} = 7 \] 8. **Final Calculation**: \[ \frac{1}{50}(I_7 - 7I_6) = \frac{1}{50} \cdot 7 = \frac{7}{50} \] ### Final Answer: \[ \frac{1}{50}(I_7 - 7I_6) = \frac{7}{50} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 45

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 47

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

If I_(n)=int_(0)^(1)(1-x^(5))^(n)dx, then (55)/(7)quad (I_(10))/(I_(11)) is equal to

If I_(n)=int(sin nx)/(sin x)dx, for n>1, then the value of I_(n)-I_(n-2) is

If I_(n)=int(sin x)^(n)dx,n in N, then 5I_(4)-6I_(6) is equal to

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

Consider I_(1)=int_(10)^(20)(lnx)/(lnx+ln(30-x))dx and I_(2)=int_(20)^(30)(lnx)/(lnx +ln(50-x))dx . Then, the value of (I_(1))/(I_(2)) is

Let I_(n)int_(0)^((pi)/(2))(sin x+cos x)^(n)dx(n>=2) Then the value of nI_(n)-2(n-1)I_(n-2) is

NTA MOCK TESTS-NTA JEE MOCK TEST 46-MATHEMATICS
  1. The value of lim(xrarr0)(secx+tanx)^(1)/(x) is equal to

    Text Solution

    |

  2. The minimum value of the function f(x)=(tanx)/(3+2tanx), AA x in [0, (...

    Text Solution

    |

  3. The solution of the differential equation y(sin^(2)x)dy+(sinxcosx)y^(2...

    Text Solution

    |

  4. The negation of (~p ^^ q) vv (p ^^ ~ q) is

    Text Solution

    |

  5. If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):} (where [...

    Text Solution

    |

  6. If int(dx)/(x^(2)+x)=ln|f(x)|+C (where C is the constant of integratio...

    Text Solution

    |

  7. Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-h...

    Text Solution

    |

  8. The chords passing through (2, 1) intersect the hyperbola (x^(2))/(16)...

    Text Solution

    |

  9. If |(cos theta,-1,1),(cos2 theta,4,3),(2,7,7)|=0, then the number of v...

    Text Solution

    |

  10. A box contains x red balls and 10 black balls. 3 balls are drawn one b...

    Text Solution

    |

  11. The equation of the external bisector of angleBAC" to "DeltaABC with v...

    Text Solution

    |

  12. Chord joining two distinct point P(a, 4b) and Q(c, -(16)/(b)) (both ar...

    Text Solution

    |

  13. A plane P = 0 passing through the point (1, 1, 1) is perpendicular to ...

    Text Solution

    |

  14. Let the complex numbers Z(1), Z(2) and Z(3) are the vertices A, B and ...

    Text Solution

    |

  15. Let A be the centre of the circle x^(2)+y^(2)-2x-4y-20=0. If the tange...

    Text Solution

    |

  16. If the coefficient of x^(6) in the expansion of (2+x)^(3)(3+x)^(2)(5+x...

    Text Solution

    |

  17. The maximum value of x that satisfies the equation sin^(-1)((2sqrt(15)...

    Text Solution

    |

  18. The number of all possible symmetric matrices of order 3xx3 with each ...

    Text Solution

    |

  19. The mean of 40 observations 20 and their standard deviation is 5. If t...

    Text Solution

    |

  20. If I(n)=(d^(n))/(dx^(n))(x^(n)lnx), then the value of (1)/(50)(I(7)-7I...

    Text Solution

    |