Home
Class 12
MATHS
If cos^(-1)|sinx|gesin^(-1)|sinx|, then ...

If `cos^(-1)|sinx|gesin^(-1)|sinx|`, then the number of integral values of x in the interval `x in [0, 3pi]` are

A

7

B

6

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \cos^{-1} |\sin x| \geq \sin^{-1} |\sin x| \), we will follow these steps: ### Step 1: Understand the Functions The functions \( \cos^{-1} y \) and \( \sin^{-1} y \) are defined for \( y \) in the range \([-1, 1]\). The function \( |\sin x| \) will also be in the range \([0, 1]\) since it represents the absolute value of the sine function. ### Step 2: Set Up the Inequality We need to analyze the inequality: \[ \cos^{-1} |\sin x| \geq \sin^{-1} |\sin x| \] ### Step 3: Use Known Values From trigonometric identities, we know that: \[ \cos^{-1} y + \sin^{-1} y = \frac{\pi}{2} \quad \text{for } y \in [0, 1] \] Thus, we can rewrite the inequality: \[ \cos^{-1} |\sin x| \geq \sin^{-1} |\sin x| \implies \cos^{-1} |\sin x| \geq \frac{\pi}{2} - \cos^{-1} |\sin x| \] This simplifies to: \[ 2\cos^{-1} |\sin x| \geq \frac{\pi}{2} \] or \[ \cos^{-1} |\sin x| \geq \frac{\pi}{4} \] ### Step 4: Solve for \( |\sin x| \) Taking the cosine of both sides, we get: \[ |\sin x| \leq \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] This means: \[ |\sin x| \leq \frac{1}{\sqrt{2}} \] ### Step 5: Find the Values of \( x \) The sine function \( \sin x \) achieves the value \( \frac{1}{\sqrt{2}} \) at: \[ x = \frac{\pi}{4} + n\pi \quad \text{and} \quad x = \frac{3\pi}{4} + n\pi \quad \text{for integers } n \] Thus, the intervals where \( |\sin x| \leq \frac{1}{\sqrt{2}} \) are: \[ x \in \left[0, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right] \cup \left[\frac{7\pi}{4}, 2\pi\right] \] And similarly for the next cycle up to \( 3\pi \). ### Step 6: Count Integral Values Now we need to find the integral values of \( x \) in the interval \( [0, 3\pi] \): - From \( 0 \) to \( \frac{\pi}{4} \): \( 0 \) - From \( \frac{3\pi}{4} \) to \( \frac{5\pi}{4} \): \( 1 \) (only \( 1 \)) - From \( \frac{7\pi}{4} \) to \( 2\pi \): \( 2, 3, 4, 5, 6 \) - From \( 2\pi \) to \( 3\pi \): \( 6, 7, 8, 9 \) The integral values are \( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \). ### Conclusion The total number of integral values of \( x \) in the interval \( [0, 3\pi] \) is **10**.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 55

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 57

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If cos^(2)x+sinx+1=0 , then the value of x lies in the interval

If |(sinx,sin2x,sin3x),(sin2x,sin3x,sinx),(sin3x,sinx,sin2x)|=0 then the number of values of x in interval [0,2pi] is

The number of integral values of X in the interval [0,pi] satisfying the inequality 2sin^(2)2x-3sin2x+1<0

The number of values of x in the interval [0, 3pi] satisfying the equation 3sin^(2)x-7sinx+2=0 is

If cos(x+pi/3)+cos x=a has real solutions, then (a) number of integral values of a are 3 (b) sum of number of integral values of a is 0 (c) when a=1 , number of solutions for x in [0,2pi] are 3 (d) when a=1, number of solutions for x in [0,2pi] are 2

Let the slope of the curve y=cos^(-1)(sinx) be tantheta then the value of theta in the interval (0,pi) is

The number of values of x in the interval [0,5pi] satisfying the equation 3sin^2x-7sinx+2=0 is

The number of solution of sinx+sin3x+sin5x=0 in the interval {:[(pi)/(2)","3(pi)/(2)]:} is

NTA MOCK TESTS-NTA JEE MOCK TEST 56-MATHEMATICS
  1. If p and q are two logical statements, then ~(pvvq)rarr(prarrq) is equ...

    Text Solution

    |

  2. A tower subtends angles alpha, 2alpha and 3alpha respectively at point...

    Text Solution

    |

  3. If cos^(-1)|sinx|gesin^(-1)|sinx|, then the number of integral values ...

    Text Solution

    |

  4. The number of ways in which we can put 5 different balls in 5 differen...

    Text Solution

    |

  5. If the equation x^(3)-6x^(2)+9x+lambda=0 has exactly one root in (1, 3...

    Text Solution

    |

  6. Let a(n)=int(0)^((pi)/(2))(1-cos2nx)/(1-cos2x)dx, then a(1),a(2),a(2),...

    Text Solution

    |

  7. The solution of the differential equation (dy)/(dx)=e^(y)(1/(2x^2)+1),...

    Text Solution

    |

  8. If the area bounded by the parabola y=2-x^(2) and the line y=-x is (k)...

    Text Solution

    |

  9. Consider three square matrices A, B and C of order 3 such that A^(T)=A...

    Text Solution

    |

  10. The tangent to the circle x^(2)+y^(2)=5 at the point (1, -2) also touc...

    Text Solution

    |

  11. A line L passing through (1, 2, 3) and perpendicular to the line L(1):...

    Text Solution

    |

  12. Probability that A will pass the exam is (1)/(4), B will pass the exam...

    Text Solution

    |

  13. The coordinate axes is rotated and shifted in such a way that the "IV"...

    Text Solution

    |

  14. Let P=[(2alpha),(5),(-3alpha^(2))] and Q=[(2l,-m,5n)] are two matrices...

    Text Solution

    |

  15. Let S and S' are the foci of the ellipse x=3+5 cos theta, y=-2+4sin th...

    Text Solution

    |

  16. For a complex number Z,|Z|=1 and "arg "(Z)=theta. If (Z)(Z^(2))(Z^(3))...

    Text Solution

    |

  17. The value of lim(xrarr0)(ln(10-9cos2x))/(ln^(2)(sin3x+1)) is equal to

    Text Solution

    |

  18. Consider a parallelogram constructed on the vectors vecA=5vecp+2vecq a...

    Text Solution

    |

  19. If the line y=mx+c touches the parabola y^(2)=12(x+3) exactly for one ...

    Text Solution

    |

  20. The sum of all the values of x between 0 and 4pi which satisfy the equ...

    Text Solution

    |