Home
Class 12
MATHS
Let P=[(2alpha),(5),(-3alpha^(2))] and Q...

Let `P=[(2alpha),(5),(-3alpha^(2))] and Q=[(2l,-m,5n)]` are two matrices, where `l, m, n, alpha in R`, then the value of determinant PQ is equal to

A

0

B

`-1`

C

2

D

not possible

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the determinant of the product of two matrices \( P \) and \( Q \). Let's break down the solution step by step. ### Step 1: Define the matrices We have: \[ P = \begin{bmatrix} 2\alpha \\ 5 \\ -3\alpha^2 \end{bmatrix} \] \[ Q = \begin{bmatrix} 2l & -m & 5n \end{bmatrix} \] ### Step 2: Multiply the matrices The product \( PQ \) will be a \( 3 \times 3 \) matrix. To compute \( PQ \), we multiply each element of \( P \) by each element of \( Q \). \[ PQ = \begin{bmatrix} 2\alpha \cdot 2l & 2\alpha \cdot (-m) & 2\alpha \cdot 5n \\ 5 \cdot 2l & 5 \cdot (-m) & 5 \cdot 5n \\ -3\alpha^2 \cdot 2l & -3\alpha^2 \cdot (-m) & -3\alpha^2 \cdot 5n \end{bmatrix} \] Calculating each entry: - First row: - \( 4\alpha l \) - \( -2\alpha m \) - \( 10\alpha n \) - Second row: - \( 10l \) - \( -5m \) - \( 25n \) - Third row: - \( -6\alpha^2 l \) - \( 3\alpha^2 m \) - \( -15\alpha^2 n \) So, we have: \[ PQ = \begin{bmatrix} 4\alpha l & -2\alpha m & 10\alpha n \\ 10l & -5m & 25n \\ -6\alpha^2 l & 3\alpha^2 m & -15\alpha^2 n \end{bmatrix} \] ### Step 3: Calculate the determinant To find the determinant of the matrix \( PQ \), we can use the property that if two columns (or rows) of a determinant are identical, the determinant is zero. Let's observe the columns: - The first column is \( \begin{bmatrix} 4\alpha l \\ 10l \\ -6\alpha^2 l \end{bmatrix} \) - The second column is \( \begin{bmatrix} -2\alpha m \\ -5m \\ 3\alpha^2 m \end{bmatrix} \) - The third column is \( \begin{bmatrix} 10\alpha n \\ 25n \\ -15\alpha^2 n \end{bmatrix} \) Notice that: - The first and third columns can be simplified and compared. ### Step 4: Factor out common terms We can factor out \( 2l \) from the first column, \( m \) from the second column, and \( 5n \) from the third column: \[ \text{Det}(PQ) = 2l \cdot m \cdot 5n \cdot \text{Det}\begin{bmatrix} 2\alpha & -1 & 5 \\ 5 & -1 & 5 \\ -3\alpha^2 & 3 & -3 \end{bmatrix} \] ### Step 5: Check for identical columns After simplifying, we can see that if any two columns are identical, the determinant will be zero. In our case, if we analyze the matrix formed, we can see that the first and third columns are multiples of each other, confirming that they are linearly dependent. ### Conclusion Thus, the value of the determinant of \( PQ \) is: \[ \text{Det}(PQ) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 55

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 57

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let 2 alpha^(2)+6 alpha beta+5 beta^(2)=1, where alpha,beta in R then the maximum value of (2 alpha^(2)-1) is

The angles alpha and beta are such that tan alpha=m+2 and tan beta=m where m is a constant.If sec^(2)alpha-sec^(2)beta=16 then the value of cot(alpha-beta) is equal to

The angles alpha and beta are such that tan alpha=m+2. and tan beta=m where m is a constant.If sec^(2)alpha-sec^(2)beta=16 then the value of cot(alpha-beta) is equal to

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Largest integral value of N if alpha_(1)=5, alpha_(2)=3 and alpha_(3)=2 .

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Number of integral values of N if alpha_(1)=4 and alpha_(2)=2 :

If 4n alpha=pi then cot alpha cot2 alpha cot3 alpha...cot(2n-1)alpha n in Z is equal to

If |(a,b,c),(l,m,n),(p,q,r)|=2 , then what is the value of the determinant |(6a,3b,15c),(2l,m,5n),(2p,q,5r)| = ?

Let A=[(5,5alpha,alpha),(0,alpha,5alpha),(0,0,5)] . If |A|^2=25 , then |alpha| is equal to :

NTA MOCK TESTS-NTA JEE MOCK TEST 56-MATHEMATICS
  1. A tower subtends angles alpha, 2alpha and 3alpha respectively at point...

    Text Solution

    |

  2. If cos^(-1)|sinx|gesin^(-1)|sinx|, then the number of integral values ...

    Text Solution

    |

  3. The number of ways in which we can put 5 different balls in 5 differen...

    Text Solution

    |

  4. If the equation x^(3)-6x^(2)+9x+lambda=0 has exactly one root in (1, 3...

    Text Solution

    |

  5. Let a(n)=int(0)^((pi)/(2))(1-cos2nx)/(1-cos2x)dx, then a(1),a(2),a(2),...

    Text Solution

    |

  6. The solution of the differential equation (dy)/(dx)=e^(y)(1/(2x^2)+1),...

    Text Solution

    |

  7. If the area bounded by the parabola y=2-x^(2) and the line y=-x is (k)...

    Text Solution

    |

  8. Consider three square matrices A, B and C of order 3 such that A^(T)=A...

    Text Solution

    |

  9. The tangent to the circle x^(2)+y^(2)=5 at the point (1, -2) also touc...

    Text Solution

    |

  10. A line L passing through (1, 2, 3) and perpendicular to the line L(1):...

    Text Solution

    |

  11. Probability that A will pass the exam is (1)/(4), B will pass the exam...

    Text Solution

    |

  12. The coordinate axes is rotated and shifted in such a way that the "IV"...

    Text Solution

    |

  13. Let P=[(2alpha),(5),(-3alpha^(2))] and Q=[(2l,-m,5n)] are two matrices...

    Text Solution

    |

  14. Let S and S' are the foci of the ellipse x=3+5 cos theta, y=-2+4sin th...

    Text Solution

    |

  15. For a complex number Z,|Z|=1 and "arg "(Z)=theta. If (Z)(Z^(2))(Z^(3))...

    Text Solution

    |

  16. The value of lim(xrarr0)(ln(10-9cos2x))/(ln^(2)(sin3x+1)) is equal to

    Text Solution

    |

  17. Consider a parallelogram constructed on the vectors vecA=5vecp+2vecq a...

    Text Solution

    |

  18. If the line y=mx+c touches the parabola y^(2)=12(x+3) exactly for one ...

    Text Solution

    |

  19. The sum of all the values of x between 0 and 4pi which satisfy the equ...

    Text Solution

    |

  20. If the value of the integral I=int(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equ...

    Text Solution

    |