Home
Class 12
MATHS
Consider a parallelogram constructed on ...

Consider a parallelogram constructed on the vectors `vecA=5vecp+2vecq and vecB=vecp-3vecq`. If `|vecp|=2, |vecq|=5`, the angle between `vecp` and `vecq` is `(pi)/(3)` and the length of the smallest diagonal of the parallelogram is k units, then the value of `k^(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k^2 \), where \( k \) is the length of the smallest diagonal of the parallelogram formed by the vectors \( \vec{A} \) and \( \vec{B} \). ### Step 1: Define the vectors Given: \[ \vec{A} = 5\vec{p} + 2\vec{q} \] \[ \vec{B} = \vec{p} - 3\vec{q} \] ### Step 2: Calculate the diagonals The diagonals of the parallelogram can be represented as: 1. \( \vec{D_1} = \vec{A} + \vec{B} \) 2. \( \vec{D_2} = \vec{A} - \vec{B} \) Calculating \( \vec{D_1} \): \[ \vec{D_1} = (5\vec{p} + 2\vec{q}) + (\vec{p} - 3\vec{q}) = (5\vec{p} + \vec{p}) + (2\vec{q} - 3\vec{q}) = 6\vec{p} - \vec{q} \] Calculating \( \vec{D_2} \): \[ \vec{D_2} = (5\vec{p} + 2\vec{q}) - (\vec{p} - 3\vec{q}) = (5\vec{p} - \vec{p}) + (2\vec{q} + 3\vec{q}) = 4\vec{p} + 5\vec{q} \] ### Step 3: Calculate the magnitudes of the diagonals To find the lengths of the diagonals, we need to compute the magnitudes \( |\vec{D_1}| \) and \( |\vec{D_2}| \). Calculating \( |\vec{D_1}|^2 \): \[ |\vec{D_1}|^2 = |6\vec{p} - \vec{q}|^2 = (6\vec{p} - \vec{q}) \cdot (6\vec{p} - \vec{q}) = 36|\vec{p}|^2 - 12(\vec{p} \cdot \vec{q}) + |\vec{q}|^2 \] Calculating \( |\vec{D_2}|^2 \): \[ |\vec{D_2}|^2 = |4\vec{p} + 5\vec{q}|^2 = (4\vec{p} + 5\vec{q}) \cdot (4\vec{p} + 5\vec{q}) = 16|\vec{p}|^2 + 40(\vec{p} \cdot \vec{q}) + 25|\vec{q}|^2 \] ### Step 4: Substitute the known values Given: - \( |\vec{p}| = 2 \) - \( |\vec{q}| = 5 \) - The angle \( \theta \) between \( \vec{p} \) and \( \vec{q} \) is \( \frac{\pi}{3} \), thus \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \). Now, calculate \( \vec{p} \cdot \vec{q} \): \[ \vec{p} \cdot \vec{q} = |\vec{p}||\vec{q}|\cos\theta = 2 \cdot 5 \cdot \frac{1}{2} = 5 \] ### Step 5: Calculate \( |\vec{D_1}|^2 \) Substituting the values into \( |\vec{D_1}|^2 \): \[ |\vec{D_1}|^2 = 36(2^2) - 12(5) + (5^2) = 36(4) - 60 + 25 = 144 - 60 + 25 = 109 \] ### Step 6: Calculate \( |\vec{D_2}|^2 \) Substituting the values into \( |\vec{D_2}|^2 \): \[ |\vec{D_2}|^2 = 16(2^2) + 40(5) + 25(5^2) = 16(4) + 200 + 25(25) = 64 + 200 + 625 = 889 \] ### Step 7: Determine the smallest diagonal The smallest diagonal is \( |\vec{D_1}| \) since \( 109 < 889 \). ### Step 8: Find \( k^2 \) Thus, we have: \[ k^2 = 109 \] ### Final Answer The value of \( k^2 \) is \( \boxed{109} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 55

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 57

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If vecP.vecQ=PQ then angle between vecP and vecQ is

If |vecP + vecQ| = |vecP -vecQ| the angle between vecP and vecQ is

if |vecP + vecQ| = |vecP| + |vecQ| , the angle between the vectors vecP and vecQ is

If |vecP + vecQ|= | vecP| -|vecQ| , the angle between the vectors vecP and vecQ is

|vecP| = |vecQ| , |vecP +vecQ| = |vecP -vecQ| .Find the angle between P and Q

Given that vecp=veca+vecb and vecq=veca-vecb and |veca|=|vecb|, show that vecp.veca=0

If vectors vecP,vecQ and vecR have magnitude 5,12 and 13 units and vecP+vecQ=vecR , the angle between vecQ and vecR is :

If vectors vecP, vecQ and vecR have magnitudes 5, 12 and 13 units and vecP + vecQ = vecR , the angle between vecQ and vecR is :

For any two vectors vecp and vecq , show that |vecp.vecq| le|vecp||vecq| .

If vectors vecP, vecQ and vecR have magnitudes 5,12 and 13 units and vecP + vecQ - vecR = 0 , the angle between vecQ and vecR is

NTA MOCK TESTS-NTA JEE MOCK TEST 56-MATHEMATICS
  1. A tower subtends angles alpha, 2alpha and 3alpha respectively at point...

    Text Solution

    |

  2. If cos^(-1)|sinx|gesin^(-1)|sinx|, then the number of integral values ...

    Text Solution

    |

  3. The number of ways in which we can put 5 different balls in 5 differen...

    Text Solution

    |

  4. If the equation x^(3)-6x^(2)+9x+lambda=0 has exactly one root in (1, 3...

    Text Solution

    |

  5. Let a(n)=int(0)^((pi)/(2))(1-cos2nx)/(1-cos2x)dx, then a(1),a(2),a(2),...

    Text Solution

    |

  6. The solution of the differential equation (dy)/(dx)=e^(y)(1/(2x^2)+1),...

    Text Solution

    |

  7. If the area bounded by the parabola y=2-x^(2) and the line y=-x is (k)...

    Text Solution

    |

  8. Consider three square matrices A, B and C of order 3 such that A^(T)=A...

    Text Solution

    |

  9. The tangent to the circle x^(2)+y^(2)=5 at the point (1, -2) also touc...

    Text Solution

    |

  10. A line L passing through (1, 2, 3) and perpendicular to the line L(1):...

    Text Solution

    |

  11. Probability that A will pass the exam is (1)/(4), B will pass the exam...

    Text Solution

    |

  12. The coordinate axes is rotated and shifted in such a way that the "IV"...

    Text Solution

    |

  13. Let P=[(2alpha),(5),(-3alpha^(2))] and Q=[(2l,-m,5n)] are two matrices...

    Text Solution

    |

  14. Let S and S' are the foci of the ellipse x=3+5 cos theta, y=-2+4sin th...

    Text Solution

    |

  15. For a complex number Z,|Z|=1 and "arg "(Z)=theta. If (Z)(Z^(2))(Z^(3))...

    Text Solution

    |

  16. The value of lim(xrarr0)(ln(10-9cos2x))/(ln^(2)(sin3x+1)) is equal to

    Text Solution

    |

  17. Consider a parallelogram constructed on the vectors vecA=5vecp+2vecq a...

    Text Solution

    |

  18. If the line y=mx+c touches the parabola y^(2)=12(x+3) exactly for one ...

    Text Solution

    |

  19. The sum of all the values of x between 0 and 4pi which satisfy the equ...

    Text Solution

    |

  20. If the value of the integral I=int(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equ...

    Text Solution

    |