Home
Class 12
MATHS
Consider I(1)=int((pi)/(4))^((pi)/(2))(e...

Consider `I_(1)=int_((pi)/(4))^((pi)/(2))(e^(sinx)+1)/(e^(cosx)+1)dx and I_(2)=int_((pi)/(4))^((pi)/(2))(e^(cosx)+1)/(e^(sinx)+1)dx`, then

A

`I_(1)gtI_(2)`

B

`I_(1)ltI_(2)`

C

`I_(1)=I_(2)`

D

`I_(1)+I_(2)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the integrals \( I_1 \) and \( I_2 \) given by: \[ I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{e^{\sin x} + 1}{e^{\cos x} + 1} \, dx \] \[ I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{e^{\cos x} + 1}{e^{\sin x} + 1} \, dx \] ### Step 1: Analyze the interval In the interval \( \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \): - \( \sin x \) is increasing and \( \cos x \) is decreasing. - At \( x = \frac{\pi}{4} \), \( \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \). - At \( x = \frac{\pi}{2} \), \( \sin\left(\frac{\pi}{2}\right) = 1 \) and \( \cos\left(\frac{\pi}{2}\right) = 0 \). Thus, in this interval, \( \sin x \) is greater than \( \cos x \). ### Step 2: Compare the integrands Since \( \sin x > \cos x \) in the interval, we can analyze the expressions: \[ \frac{e^{\sin x} + 1}{e^{\cos x} + 1} \quad \text{and} \quad \frac{e^{\cos x} + 1}{e^{\sin x} + 1} \] From the fact that \( e^{\sin x} > e^{\cos x} \), we can conclude: \[ \frac{e^{\sin x} + 1}{e^{\cos x} + 1} > 1 \quad \text{and} \quad \frac{e^{\cos x} + 1}{e^{\sin x} + 1} < 1 \] ### Step 3: Establish the inequality This implies: \[ I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{e^{\sin x} + 1}{e^{\cos x} + 1} \, dx > \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 1 \, dx \] And similarly: \[ I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{e^{\cos x} + 1}{e^{\sin x} + 1} \, dx < \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 1 \, dx \] ### Step 4: Conclusion Since \( I_1 > I_2 \), we conclude that: \[ I_1 > I_2 \] ### Final Answer Thus, the answer is that \( I_1 \) is greater than \( I_2 \). ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 57

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 59

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//4)^(pi//4)(e^(x)(x^(3)sinx))/(e^(2x)-1)dx equals

int_(-pi//4)^(pi//4)(e^(x)x sin x)/(e^(2x)-1)dx=

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

Evaluate int_(pi/3)^(pi/2) e^x((1+sinx)/(1+cosx))dx

int_(0)^(pi//2)e^(x)((1+sinx)/(1+cosx))dx=?

int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

Evaluate: int_(pi//6)^(pi//4)(1+cotx)/(e^(x)sinx) dx

int_(0)^(pi//2)((sinx-cosx))/((1+sinxcosx))dx=0

int_(0)^(pi//2) e^x(sinx+cosx) dx

NTA MOCK TESTS-NTA JEE MOCK TEST 58-MATHEMATICS
  1. Out of 10 white, 8 black and 6 red balls, the number of ways in which ...

    Text Solution

    |

  2. If log(2)(5.2^(x)+1),log(4)(2^(1-x)+1) and 1 are in A.P,then x equals

    Text Solution

    |

  3. Consider I(1)=int((pi)/(4))^((pi)/(2))(e^(sinx)+1)/(e^(cosx)+1)dx and ...

    Text Solution

    |

  4. Let f(x)=lim(nrarroo)((x^(2)+2x+4+sinpix^(n))-1)/((x^(2)+2x+4+sinpix^(...

    Text Solution

    |

  5. The equation of the common tangent to the parabolas y^(2)=2x and x^(2)...

    Text Solution

    |

  6. If p, q and r are three logical statements then the truth value of the...

    Text Solution

    |

  7. The mean of five observation is 4 and their variance is 2.8. If three ...

    Text Solution

    |

  8. If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C, where f(e )=-3 a...

    Text Solution

    |

  9. If S(n)=Sigma(r=1)^(n)t(r)=(1)/(6)n(2n^(2)+9n+13), then Sigma(r=1)^(n)...

    Text Solution

    |

  10. A cone having fixed volume has semi - vertical angle of (pi)/(4). At a...

    Text Solution

    |

  11. Let the lines 4x-3y+10=0 and 4x-3y-30=0 make equal intercepts of 6 uni...

    Text Solution

    |

  12. A biased coin is tossed repeatedly until a tail appears for the first ...

    Text Solution

    |

  13. If A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] and B=[(-4,-3,-3),(1,0,1),(4,4,3)]...

    Text Solution

    |

  14. Consider three vectors vec(V(1))=(sin theta)hati+(cos theta)hatj+(a-...

    Text Solution

    |

  15. Let Z=x+iy is a complex number, such that x^(2)+y^(2)=1. In which of t...

    Text Solution

    |

  16. The point (a^(2),a+1) lies in the angle between the lines 3x+y+1=0 and...

    Text Solution

    |

  17. The area (in sq. units) bounded by the curve y=max(x, sinx), AA x in [...

    Text Solution

    |

  18. The value of lim(xrarr0)(cos(tanx)-cosx)/(4x^(4)) is equal to

    Text Solution

    |

  19. The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)g...

    Text Solution

    |

  20. The number of solutions of the equation tan^(2)x-sec^(10)x+1=0" for " ...

    Text Solution

    |