Home
Class 12
MATHS
If S(n)=Sigma(r=1)^(n)t(r)=(1)/(6)n(2n^(...

If `S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13)`, then `Sigma_(r=1)^(n)sqrt(t_(r))` is equal to

A

`(1)/(2)n(n+1)`

B

`(1)/(2)n(n+3)`

C

`(n+1)^(2)`

D

`n^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \Sigma_{r=1}^{n} \sqrt{t_r} \) given that \( S_n = \Sigma_{r=1}^{n} t_r = \frac{1}{6} n (2n^2 + 9n + 13) \). ### Step 1: Find \( t_n \) We know that: \[ S_n = \Sigma_{r=1}^{n} t_r \] To find \( t_n \), we can use the relationship: \[ t_n = S_n - S_{n-1} \] We need to calculate \( S_{n-1} \): \[ S_{n-1} = \frac{1}{6} (n-1)(2(n-1)^2 + 9(n-1) + 13) \] ### Step 2: Simplify \( S_{n-1} \) Calculating \( S_{n-1} \): \[ S_{n-1} = \frac{1}{6} (n-1)(2(n^2 - 2n + 1) + 9(n - 1) + 13) \] \[ = \frac{1}{6} (n-1)(2n^2 - 4n + 2 + 9n - 9 + 13) \] \[ = \frac{1}{6} (n-1)(2n^2 + 5n + 6) \] ### Step 3: Calculate \( t_n \) Now, we can find \( t_n \): \[ t_n = S_n - S_{n-1} \] Substituting the values: \[ t_n = \frac{1}{6} n (2n^2 + 9n + 13) - \frac{1}{6} (n-1)(2n^2 + 5n + 6) \] ### Step 4: Simplify \( t_n \) Expanding \( t_n \): \[ t_n = \frac{1}{6} \left[ n(2n^2 + 9n + 13) - (n-1)(2n^2 + 5n + 6) \right] \] \[ = \frac{1}{6} \left[ 2n^3 + 9n^2 + 13n - (2n^3 + 5n^2 + 6n - 2n^2 - 5n - 6) \right] \] \[ = \frac{1}{6} \left[ 2n^3 + 9n^2 + 13n - 2n^3 - 5n^2 - 6n + 2n^2 + 5n + 6 \right] \] \[ = \frac{1}{6} \left[ (9n^2 - 5n^2 + 2n^2) + (13n - 6n + 5n) + 6 \right] \] \[ = \frac{1}{6} \left[ 6n^2 + 12n + 6 \right] \] \[ = n^2 + 2n + 1 \] Thus, we have: \[ t_n = (n + 1)^2 \] ### Step 5: Find \( \Sigma_{r=1}^{n} \sqrt{t_r} \) Now we need to find: \[ \Sigma_{r=1}^{n} \sqrt{t_r} = \Sigma_{r=1}^{n} (r + 1) \] This can be simplified as: \[ \Sigma_{r=1}^{n} (r + 1) = \Sigma_{r=1}^{n} r + \Sigma_{r=1}^{n} 1 \] \[ = \frac{n(n + 1)}{2} + n \] \[ = \frac{n(n + 1)}{2} + \frac{2n}{2} = \frac{n(n + 1) + 2n}{2} = \frac{n^2 + 3n}{2} \] ### Final Answer Thus, the value of \( \Sigma_{r=1}^{n} \sqrt{t_r} \) is: \[ \frac{n(n + 3)}{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 57

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 59

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If S_(n)=sum_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13), then sum_(r=1)^(oo)(1)/(r*sqrt(t)) equals

If sum_(r=1)^(n)T_(r)=n(2n^(2)+9n+13), then find the sum sum_(r=1)^(n)sqrt(T_(r))

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

If sum_(r=1)^(n)t_(r)=(n)/(8)(n+1)(n+2)(n+3), then find sum_(r=1)^(n)(1)/(t_(r)).

If Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3) then find Sigma_(r=1)^(n) 1/T_r

If sum_(r=1)^(n)T_(r)=n(2n^(2)+9n+13); then find the value of sum_(r=1)^(n)sqrt(T_(r))

What is Sigma_(r=0)^(n) C(n,r) equal to ?

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 58-MATHEMATICS
  1. The equation of the common tangent to the parabolas y^(2)=2x and x^(2)...

    Text Solution

    |

  2. If p, q and r are three logical statements then the truth value of the...

    Text Solution

    |

  3. The mean of five observation is 4 and their variance is 2.8. If three ...

    Text Solution

    |

  4. If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C, where f(e )=-3 a...

    Text Solution

    |

  5. If S(n)=Sigma(r=1)^(n)t(r)=(1)/(6)n(2n^(2)+9n+13), then Sigma(r=1)^(n)...

    Text Solution

    |

  6. A cone having fixed volume has semi - vertical angle of (pi)/(4). At a...

    Text Solution

    |

  7. Let the lines 4x-3y+10=0 and 4x-3y-30=0 make equal intercepts of 6 uni...

    Text Solution

    |

  8. A biased coin is tossed repeatedly until a tail appears for the first ...

    Text Solution

    |

  9. If A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] and B=[(-4,-3,-3),(1,0,1),(4,4,3)]...

    Text Solution

    |

  10. Consider three vectors vec(V(1))=(sin theta)hati+(cos theta)hatj+(a-...

    Text Solution

    |

  11. Let Z=x+iy is a complex number, such that x^(2)+y^(2)=1. In which of t...

    Text Solution

    |

  12. The point (a^(2),a+1) lies in the angle between the lines 3x+y+1=0 and...

    Text Solution

    |

  13. The area (in sq. units) bounded by the curve y=max(x, sinx), AA x in [...

    Text Solution

    |

  14. The value of lim(xrarr0)(cos(tanx)-cosx)/(4x^(4)) is equal to

    Text Solution

    |

  15. The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)g...

    Text Solution

    |

  16. The number of solutions of the equation tan^(2)x-sec^(10)x+1=0" for " ...

    Text Solution

    |

  17. If the solution of the differential equation (1+e^((x)/(y)))dx+e^((x)/...

    Text Solution

    |

  18. The equation of the plane passing through the poit of intersection of ...

    Text Solution

    |

  19. Let A=[a(ij)](3xx3) be a matrix, where a(ij)={{:(x,inej),(1,i=j):} Aai...

    Text Solution

    |

  20. Let the eccentricity of the hyperbola with the principal axes along th...

    Text Solution

    |