Home
Class 12
MATHS
Consider three vectors vec(V(1))=(sin ...

Consider three vectors
`vec(V_(1))=(sin theta)hati+(cos theta)hatj+(a-3)hatk, vec(V_(2))=(sin theta+cos theta)+hati+(cos theta-sin theta)hatj` and `+(b-4)hatk`
`vec(V_(3))=(cos theta)hati+(sin theta)hatj+(c-5)hatk`. If the resultant of `vec(V_(1)),vec(V_(2)) and vec(V_(3))` is equal to `lambda hati`, where `theta in [-pi, pi]` and `a, b, c in N,` then the number of quadruplets `(a, b, c, theta)` are

A

55

B

110

C

91

D

182

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the number of quadruplets \((a, b, c, \theta)\) such that the resultant of the three vectors \( \vec{V_1}, \vec{V_2}, \vec{V_3} \) equals \( \lambda \hat{i} \). ### Step-by-Step Solution: 1. **Define the Vectors**: \[ \vec{V_1} = (\sin \theta) \hat{i} + (\cos \theta) \hat{j} + (a - 3) \hat{k} \] \[ \vec{V_2} = (\sin \theta + \cos \theta) \hat{i} + (\cos \theta - \sin \theta) \hat{j} + (b - 4) \hat{k} \] \[ \vec{V_3} = (\cos \theta) \hat{i} + (\sin \theta) \hat{j} + (c - 5) \hat{k} \] 2. **Calculate the Resultant Vector**: The resultant vector \( \vec{R} = \vec{V_1} + \vec{V_2} + \vec{V_3} \). - For the \( \hat{i} \) component: \[ R_i = \sin \theta + (\sin \theta + \cos \theta) + \cos \theta = 2 \sin \theta + 2 \cos \theta \] - For the \( \hat{j} \) component: \[ R_j = \cos \theta + (\cos \theta - \sin \theta) + \sin \theta = 2 \cos \theta \] - For the \( \hat{k} \) component: \[ R_k = (a - 3) + (b - 4) + (c - 5) = a + b + c - 12 \] 3. **Set the Resultant Equal to \( \lambda \hat{i} \)**: \[ \vec{R} = \lambda \hat{i} \implies R_j = 0 \text{ and } R_k = 0 \] This gives us two equations: - From \( R_j = 0 \): \[ 2 \cos \theta - 2 \sin \theta = 0 \implies \cos \theta = \sin \theta \implies \tan \theta = 1 \] - From \( R_k = 0 \): \[ a + b + c - 12 = 0 \implies a + b + c = 12 \] 4. **Solve for \( \theta \)**: The equation \( \tan \theta = 1 \) gives: \[ \theta = \frac{\pi}{4} + n\pi \] Within the interval \([-\pi, \pi]\), the valid solutions for \( \theta \) are: \[ \theta = \frac{\pi}{4}, -\frac{3\pi}{4} \] Thus, there are **2 values** for \( \theta \). 5. **Find the Number of Solutions for \( a, b, c \)**: We need to find the number of natural number solutions to the equation \( a + b + c = 12 \). - Using the "stars and bars" theorem, the number of solutions in natural numbers is given by: \[ \text{Number of solutions} = \binom{n-1}{k-1} = \binom{12-1}{3-1} = \binom{11}{2} = \frac{11 \times 10}{2} = 55 \] 6. **Total Number of Quadruplets**: The total number of quadruplets \((a, b, c, \theta)\) is: \[ \text{Total} = \text{Number of solutions for } (a, b, c) \times \text{Number of values for } \theta = 55 \times 2 = 110 \] ### Final Answer: The number of quadruplets \((a, b, c, \theta)\) is **110**.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 57

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 59

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

a cos theta+b sin theta+c=0a cos theta+b_(1)sin theta+c_(1)=0

1-(sin^(3)theta)/(sin theta+cos theta)-(cos^(3)theta)/(sin theta+cos theta) is equal to

3. sin^(3)theta+cos^(3)theta=(sin theta+cos theta)(1-sin theta cos theta)

(sin theta)/(1-cot theta)+(cos theta)/(1-tan theta) is equal to (a) 0 (b) 1(c)sin theta+cos theta(d)sin theta-cos theta

4 sin theta * cos^(3) theta-4 cos theta * sin ^(3)theta= A) 4 cos theta B) cos 4 theta C) 4 sin theta D) sin 4 theta

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

8 sin theta * cos theta * cos 2 theta * cos 4 theta = A) sin 4 theta B) sin 8 theta C) sin 16 theta D) cos 8 theta

((sin^(3)theta+cos^(3)theta)/(sin theta+cos theta)+(cos^(3)theta+sin^(3)theta)/(cos theta+sin theta))=?

((sin^(3)theta+cos^(3)theta)/(sin theta+cos theta)+(cos^(3)theta+sin^(3)theta)/(cos theta+sin theta))=?

NTA MOCK TESTS-NTA JEE MOCK TEST 58-MATHEMATICS
  1. The equation of the common tangent to the parabolas y^(2)=2x and x^(2)...

    Text Solution

    |

  2. If p, q and r are three logical statements then the truth value of the...

    Text Solution

    |

  3. The mean of five observation is 4 and their variance is 2.8. If three ...

    Text Solution

    |

  4. If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C, where f(e )=-3 a...

    Text Solution

    |

  5. If S(n)=Sigma(r=1)^(n)t(r)=(1)/(6)n(2n^(2)+9n+13), then Sigma(r=1)^(n)...

    Text Solution

    |

  6. A cone having fixed volume has semi - vertical angle of (pi)/(4). At a...

    Text Solution

    |

  7. Let the lines 4x-3y+10=0 and 4x-3y-30=0 make equal intercepts of 6 uni...

    Text Solution

    |

  8. A biased coin is tossed repeatedly until a tail appears for the first ...

    Text Solution

    |

  9. If A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] and B=[(-4,-3,-3),(1,0,1),(4,4,3)]...

    Text Solution

    |

  10. Consider three vectors vec(V(1))=(sin theta)hati+(cos theta)hatj+(a-...

    Text Solution

    |

  11. Let Z=x+iy is a complex number, such that x^(2)+y^(2)=1. In which of t...

    Text Solution

    |

  12. The point (a^(2),a+1) lies in the angle between the lines 3x+y+1=0 and...

    Text Solution

    |

  13. The area (in sq. units) bounded by the curve y=max(x, sinx), AA x in [...

    Text Solution

    |

  14. The value of lim(xrarr0)(cos(tanx)-cosx)/(4x^(4)) is equal to

    Text Solution

    |

  15. The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)g...

    Text Solution

    |

  16. The number of solutions of the equation tan^(2)x-sec^(10)x+1=0" for " ...

    Text Solution

    |

  17. If the solution of the differential equation (1+e^((x)/(y)))dx+e^((x)/...

    Text Solution

    |

  18. The equation of the plane passing through the poit of intersection of ...

    Text Solution

    |

  19. Let A=[a(ij)](3xx3) be a matrix, where a(ij)={{:(x,inej),(1,i=j):} Aai...

    Text Solution

    |

  20. Let the eccentricity of the hyperbola with the principal axes along th...

    Text Solution

    |