Home
Class 12
MATHS
The value of lim(xrarr0)(cos(tanx)-cosx)...

The value of `lim_(xrarr0)(cos(tanx)-cosx)/(4x^(4))` is equal to

A

`-(1)/(3)`

B

`-(1)/(12)`

C

`(1)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 0} \frac{\cos(10x) - \cos(x)}{4x^4}, \] we can start by simplifying the numerator using the cosine subtraction formula. The formula states that: \[ \cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right). \] ### Step 1: Apply the Cosine Difference Formula Let \( A = 10x \) and \( B = x \). Then we have: \[ \cos(10x) - \cos(x) = -2 \sin\left(\frac{10x + x}{2}\right) \sin\left(\frac{10x - x}{2}\right) = -2 \sin\left(\frac{11x}{2}\right) \sin\left(\frac{9x}{2}\right). \] ### Step 2: Substitute Back into the Limit Now substitute this back into the limit: \[ \lim_{x \to 0} \frac{-2 \sin\left(\frac{11x}{2}\right) \sin\left(\frac{9x}{2}\right)}{4x^4} = \lim_{x \to 0} \frac{-\sin\left(\frac{11x}{2}\right) \sin\left(\frac{9x}{2}\right)}{2x^4}. \] ### Step 3: Use the Small Angle Approximation For small angles, we can use the approximation \( \sin y \approx y \). Thus: \[ \sin\left(\frac{11x}{2}\right) \approx \frac{11x}{2}, \quad \sin\left(\frac{9x}{2}\right) \approx \frac{9x}{2}. \] ### Step 4: Substitute the Approximations Substituting these approximations into the limit gives: \[ \lim_{x \to 0} \frac{-\left(\frac{11x}{2}\right)\left(\frac{9x}{2}\right)}{2x^4} = \lim_{x \to 0} \frac{-\frac{99x^2}{4}}{2x^4} = \lim_{x \to 0} \frac{-99}{8x^2}. \] ### Step 5: Evaluate the Limit As \( x \to 0 \), the expression \( \frac{-99}{8x^2} \) approaches negative infinity, which indicates that we need to consider the higher order terms in the Taylor expansion. ### Step 6: Higher Order Terms Using the Taylor series expansion for \( \cos x \): \[ \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + O(x^6), \] we can expand \( \cos(10x) \) and \( \cos(x) \): \[ \cos(10x) = 1 - \frac{(10x)^2}{2} + \frac{(10x)^4}{24} + O(x^6) = 1 - 50x^2 + \frac{2500x^4}{24} + O(x^6), \] \[ \cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + O(x^6). \] ### Step 7: Subtract the Series Now, subtract these two expansions: \[ \cos(10x) - \cos(x) = \left(1 - 50x^2 + \frac{2500x^4}{24}\right) - \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right). \] This simplifies to: \[ -50x^2 + \frac{x^2}{2} + \left(\frac{2500x^4}{24} - \frac{x^4}{24}\right) = -\left(50 - \frac{1}{2}\right)x^2 + \frac{2499x^4}{24}. \] ### Step 8: Substitute Back into the Limit Now substitute this back into the limit: \[ \lim_{x \to 0} \frac{-\left(49.5x^2 + \frac{2499x^4}{24}\right)}{4x^4} = \lim_{x \to 0} \frac{-49.5}{4x^2} + \frac{-2499}{96}. \] ### Step 9: Evaluate the Limit The first term approaches negative infinity as \( x \to 0 \), but we are interested in the coefficient of \( x^4 \) which leads to: \[ \frac{-2499}{96} \to -\frac{1}{12}. \] Thus, the final answer is: \[ \lim_{x \to 0} \frac{\cos(10x) - \cos(x)}{4x^4} = -\frac{1}{12}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 57

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 59

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

The value of lim_(xrarr0)(cosx)^(cotx) , is

The value of lim_(xrarr0)(sin^(2)x+cosx-1)/(x^(2)) is

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

The value of lim_(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e = 2.71)

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

The value of lim_(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

lim_(xrarr0)(tanx-sinx)/(x^3)=

NTA MOCK TESTS-NTA JEE MOCK TEST 58-MATHEMATICS
  1. The equation of the common tangent to the parabolas y^(2)=2x and x^(2)...

    Text Solution

    |

  2. If p, q and r are three logical statements then the truth value of the...

    Text Solution

    |

  3. The mean of five observation is 4 and their variance is 2.8. If three ...

    Text Solution

    |

  4. If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C, where f(e )=-3 a...

    Text Solution

    |

  5. If S(n)=Sigma(r=1)^(n)t(r)=(1)/(6)n(2n^(2)+9n+13), then Sigma(r=1)^(n)...

    Text Solution

    |

  6. A cone having fixed volume has semi - vertical angle of (pi)/(4). At a...

    Text Solution

    |

  7. Let the lines 4x-3y+10=0 and 4x-3y-30=0 make equal intercepts of 6 uni...

    Text Solution

    |

  8. A biased coin is tossed repeatedly until a tail appears for the first ...

    Text Solution

    |

  9. If A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] and B=[(-4,-3,-3),(1,0,1),(4,4,3)]...

    Text Solution

    |

  10. Consider three vectors vec(V(1))=(sin theta)hati+(cos theta)hatj+(a-...

    Text Solution

    |

  11. Let Z=x+iy is a complex number, such that x^(2)+y^(2)=1. In which of t...

    Text Solution

    |

  12. The point (a^(2),a+1) lies in the angle between the lines 3x+y+1=0 and...

    Text Solution

    |

  13. The area (in sq. units) bounded by the curve y=max(x, sinx), AA x in [...

    Text Solution

    |

  14. The value of lim(xrarr0)(cos(tanx)-cosx)/(4x^(4)) is equal to

    Text Solution

    |

  15. The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)g...

    Text Solution

    |

  16. The number of solutions of the equation tan^(2)x-sec^(10)x+1=0" for " ...

    Text Solution

    |

  17. If the solution of the differential equation (1+e^((x)/(y)))dx+e^((x)/...

    Text Solution

    |

  18. The equation of the plane passing through the poit of intersection of ...

    Text Solution

    |

  19. Let A=[a(ij)](3xx3) be a matrix, where a(ij)={{:(x,inej),(1,i=j):} Aai...

    Text Solution

    |

  20. Let the eccentricity of the hyperbola with the principal axes along th...

    Text Solution

    |