Home
Class 12
MATHS
Find the values of x satisfying the equ...

Find the values of x satisfying the equation `|x-2|^(log_(3)x^(4)-3log_(x)9)(x-2)^(10)=1`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |x-2|^{(\log_{3}(x^{4}) - 3\log_{x}(9))(x-2)^{10}} = 1 \), we will analyze the equation step by step. ### Step 1: Analyze the Absolute Value The expression \( |x-2| \) can be split into two cases: 1. Case 1: \( x - 2 \geq 0 \) (i.e., \( x \geq 2 \)) 2. Case 2: \( x - 2 < 0 \) (i.e., \( x < 2 \)) ### Step 2: Case 1 - \( x \geq 2 \) In this case, \( |x-2| = x-2 \). The equation becomes: \[ (x-2)^{(\log_{3}(x^{4}) - 3\log_{x}(9))(x-2)^{10}} = 1 \] For this equation to hold, the exponent must be zero or the base must be 1. #### Subcase 1.1: Exponent is Zero Set the exponent to zero: \[ \log_{3}(x^{4}) - 3\log_{x}(9) + 10 = 0 \] We can simplify \( \log_{x}(9) \) as follows: \[ \log_{x}(9) = \frac{\log_{3}(9)}{\log_{3}(x)} = \frac{2}{\log_{3}(x)} \] Thus, substituting into the equation gives: \[ \log_{3}(x^{4}) - 3 \cdot \frac{2}{\log_{3}(x)} + 10 = 0 \] This simplifies to: \[ 4\log_{3}(x) - \frac{6}{\log_{3}(x)} + 10 = 0 \] Let \( t = \log_{3}(x) \): \[ 4t - \frac{6}{t} + 10 = 0 \] Multiplying through by \( t \) (assuming \( t \neq 0 \)): \[ 4t^2 + 10t - 6 = 0 \] #### Subcase 1.2: Solve the Quadratic Equation Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 4 \cdot (-6)}}{2 \cdot 4} \] \[ t = \frac{-10 \pm \sqrt{100 + 96}}{8} \] \[ t = \frac{-10 \pm \sqrt{196}}{8} \] \[ t = \frac{-10 \pm 14}{8} \] Calculating the two possible values: 1. \( t = \frac{4}{8} = \frac{1}{2} \) 2. \( t = \frac{-24}{8} = -3 \) #### Subcase 1.3: Convert Back to \( x \) Recall \( t = \log_{3}(x) \): 1. If \( t = \frac{1}{2} \), then \( x = 3^{1/2} = \sqrt{3} \). 2. If \( t = -3 \), then \( x = 3^{-3} = \frac{1}{27} \). However, both values \( \sqrt{3} \) and \( \frac{1}{27} \) are less than 2, which contradicts our assumption that \( x \geq 2 \). ### Step 3: Case 2 - \( x < 2 \) In this case, \( |x-2| = 2-x \). The equation becomes: \[ (2-x)^{(\log_{3}(x^{4}) - 3\log_{x}(9))(2-x)^{10}} = 1 \] Again, for this equation to hold, the exponent must be zero or the base must be 1. #### Subcase 2.1: Exponent is Zero Set the exponent to zero: \[ \log_{3}(x^{4}) - 3\log_{x}(9) + 10 = 0 \] This is the same equation we derived earlier, so we can use the same \( t \) substitution: \[ 4t + 10 - 6/t = 0 \] This will yield the same solutions for \( t \). ### Step 4: Conclusion Both cases yield the same values for \( x \) which do not satisfy the original conditions. Therefore, there are no values of \( x \) that satisfy the equation \( |x-2|^{(\log_{3}(x^{4}) - 3\log_{x}(9))(x-2)^{10}} = 1 \).
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|27 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise Exercise 1|3 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 3|8 Videos

Similar Questions

Explore conceptually related problems

The set of real values of x satisfying the equation |x-1|^(log_(3)(x^(2))-2log_(x)9)=(x-1)^(7)

The value of x satisfying the equation 2^(log3x)+8=3*x^(log_(9)4), is

The value of x satisfying the equation 2log_(3)x+8=3.x log_(9)4

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

Find the real values (s) of x satisfying the equation log_(2x)(4x)+log_(4x)(16x)=4 .

Value of x satisfying the equation (log_(5)(x))^(2)+log_(5x)((5)/(x))=1 are