Home
Class 12
MATHS
Find the value of tan^(-1)(cot alpha)-co...

Find the value of `tan^(-1)(cot alpha)-cot^(-1)(tan alpha)`, if `'alpha'` is the root of the equation `x^(2)-bx+1=0 (b in R^(+))`, having least absolute value.

Text Solution

Verified by Experts

The correct Answer is:
`-pi`
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|27 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise Exercise 1|3 Videos
  • QUADRATIC EQUATION & EXPRESSION

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • PROGRESSION & SERIES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • SET, RELATION & FUNCTION

    FIITJEE|Exercise Exercise 3|8 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin(tan^(-1)alpha+tan^(-1))(1)/(alpha));alpha!=0

The value of sin^3 alpha ( 1+cot alpha) + cos^3 alpha (1+tan alpha) is equal to

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

IF alpha,beta are the roots of the equation 6x^(2)-5x+1=0 , then the value of tan^(-1)alpha+tan^(2)beta is

If a is the root (having the least absolute value) or the equation x^(2)-bx-1=0(b in R^(+)), then prove that -1

If alpha in(-(3 pi)/(2),-pi), then the value of tan^(-1)(cot alpha)-cot^(-1)(tan alpha)+sin^(-1)(sin alpha)+cos^(-1)(cot alpha) is equal to (a)2 pi+alpha(b)pi+alpha(c)0(d)pi-alpha