Home
Class 12
MATHS
Evaluate int(-pi//3)^(pi//3)(sqrt(1+si...

Evaluate
`int_(-pi//3)^(pi//3)(sqrt(1+sin2x))/(|cosx|)dx`,

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sqrt{1 + \sin 2x}}{|\cos x|} \, dx, \] we can start by simplifying the integrand. ### Step 1: Simplify the integrand We know that \[ \sin 2x = 2 \sin x \cos x. \] Thus, we can rewrite \(1 + \sin 2x\) as: \[ 1 + \sin 2x = 1 + 2 \sin x \cos x = (\sin x + \cos x)^2. \] So, we have: \[ \sqrt{1 + \sin 2x} = \sqrt{(\sin x + \cos x)^2} = |\sin x + \cos x|. \] Now, substituting this back into the integral gives: \[ I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{|\sin x + \cos x|}{|\cos x|} \, dx. \] ### Step 2: Analyze the absolute values Next, we need to determine where \(\sin x + \cos x\) changes sign within the limits of integration. The expression \(\sin x + \cos x = 0\) can be solved as follows: \[ \tan x = -1 \implies x = -\frac{\pi}{4} \text{ (within the interval)}. \] Thus, we can break the integral into two parts: 1. From \(-\frac{\pi}{3}\) to \(-\frac{\pi}{4}\) 2. From \(-\frac{\pi}{4}\) to \(\frac{\pi}{3}\) ### Step 3: Split the integral We can express \(I\) as: \[ I = \int_{-\frac{\pi}{3}}^{-\frac{\pi}{4}} \frac{-(\sin x + \cos x)}{|\cos x|} \, dx + \int_{-\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{(\sin x + \cos x)}{|\cos x|} \, dx. \] ### Step 4: Evaluate each integral 1. **First Integral**: \[ I_1 = \int_{-\frac{\pi}{3}}^{-\frac{\pi}{4}} \frac{-(\sin x + \cos x)}{|\cos x|} \, dx = -\int_{-\frac{\pi}{3}}^{-\frac{\pi}{4}} \frac{\sin x + \cos x}{\cos x} \, dx = -\int_{-\frac{\pi}{3}}^{-\frac{\pi}{4}} \left( \tan x + 1 \right) \, dx. \] Evaluating this integral gives: \[ -\left[ -\ln |\cos x| + x \right]_{-\frac{\pi}{3}}^{-\frac{\pi}{4}}. \] 2. **Second Integral**: \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{(\sin x + \cos x)}{|\cos x|} \, dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{3}} \left( \tan x + 1 \right) \, dx. \] Evaluating this integral gives: \[ \left[ \ln |\sec x| + x \right]_{-\frac{\pi}{4}}^{\frac{\pi}{3}}. \] ### Step 5: Combine results Now, we combine \(I_1\) and \(I_2\) to find the total value of \(I\). ### Final Result After evaluating the limits and simplifying, we find: \[ I = \frac{\pi}{2} - \ln(\sqrt{2}). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 4:|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 8:|6 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 2:|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(pi/4)^( pi/2)sqrt(1-sin2x)dx

Evaluate : int_(-pi/3)^(pi/3)sin^3 x dx

int_(pi//3)^(pi//2) (sqrt(1+cosx))/((1-cosx)^(5//2))\ dx

Evaluate int_(pi/3)^(pi/2) e^x((1+sinx)/(1+cosx))dx

Evalaute int_(pi//6)^(pi//3)(sqrt((sinx))dx)/(sqrt((sinx))+sqrt((cosx)))

Evaluate : int_(pi/3)^( pi/3)(sin x+cos x)/(sqrt(sin2x))dx

Evaluate int_(-pi//2)^(pi//2) sqrt(cosx-cos^(3)x)dx .

Evaluate int_(0)^(pi//3)|(sin^(-1)sinx)/(cos^(-1)cosx)|dx

Evaluate int_(0)^(pi//3)|(sin^(-1)sinx)/(cos^(-1)cosx)|dx

Evaluate the following integral: int_(pi//3)^(pi//2)(sqrt(1+cosx))/((1-cosx)^(3//2))dx