Home
Class 12
MATHS
Evaluate int(0)^(pi//3)|(sin^(-1)sinx)...

Evaluate
`int_(0)^(pi//3)|(sin^(-1)sinx)/(cos^(-1)cosx)|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int_{0}^{\frac{\pi}{3}} \frac{\sin^{-1}(\sin x)}{\cos^{-1}(\cos x)} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand The integrand consists of \(\sin^{-1}(\sin x)\) and \(\cos^{-1}(\cos x)\). We know that: - For \(0 \leq x \leq \frac{\pi}{2}\), \(\sin^{-1}(\sin x) = x\). - For \(0 \leq x \leq \frac{\pi}{2}\), \(\cos^{-1}(\cos x) = x\). Since our limits of integration are from \(0\) to \(\frac{\pi}{3}\), both \(x\) values fall within these ranges. Thus, we can simplify the integrand: \[ \frac{\sin^{-1}(\sin x)}{\cos^{-1}(\cos x)} = \frac{x}{x} = 1. \] ### Step 2: Rewrite the integral Now we can rewrite the integral as: \[ \int_{0}^{\frac{\pi}{3}} 1 \, dx. \] ### Step 3: Evaluate the integral The integral of \(1\) with respect to \(x\) is simply \(x\). Therefore, we evaluate it from \(0\) to \(\frac{\pi}{3}\): \[ \int_{0}^{\frac{\pi}{3}} 1 \, dx = x \bigg|_{0}^{\frac{\pi}{3}} = \frac{\pi}{3} - 0 = \frac{\pi}{3}. \] ### Final Answer Thus, the value of the integral is: \[ \frac{\pi}{3}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 4:|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 8:|6 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 2:|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

Evaluate int_(0)^(pi//2)(sinx-cosx)/(1+sinx*cosx)dx

Evaluate int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

Evaluate int_(pi/3)^(pi/2) e^x((1+sinx)/(1+cosx))dx

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

int_(0)^( pi/2)(cosx)/(1+sinx)dx

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

Evaluate int_(0)^(pi//2)(x)/((sinx+cosx))dx .