If `g(x)=int_(0)^(x)cos^(4)t dt,` then `g(x+pi)` equals
Text Solution
Verified by Experts
The correct Answer is:
`g(x)+g(pi)`
Topper's Solved these Questions
DEFINITE INTEGRAL
FIITJEE|Exercise EXERCISE 4:|4 Videos
DEFINITE INTEGRAL
FIITJEE|Exercise EXERCISE 8:|6 Videos
DEFINITE INTEGRAL
FIITJEE|Exercise EXERCISE 2:|3 Videos
COMPLEX NUMBER
FIITJEE|Exercise NUMERICAL BASED|3 Videos
DETERMINANT
FIITJEE|Exercise NUMERICAL BASED|3 Videos
Similar Questions
Explore conceptually related problems
If g(x)=int_(0)^(x)cos^(4) dt , then g(x+pi) equals
STATEMENT-1 : If g(x)=int_(0)^(x)cos^(4)t dt then g(x+pi) is equal to g(x)+g(pi) STATEMENT-2 : If {x} represents the fractional part of x then int_(0)^(100){sqrt(x)} is equal to (2000)/(3) STATEMENT-3 : The value of int_(-(1)/(2))^((1)/(2))(alphalog((1+x)/(1-x))+beta)dx depends on the value of beta .
If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals
Ifg(x)= int_(0)^(x) cos ^(4)t dt, "then " g (x+pi) equals
If g(x) = int_(0)^(x) cos dt , then g(x+pi) equals
If g(x)=int_0^x cos4t\ dt ,\ t h e n\ g(x+pi) equals a. g(x)-g(pi) b. \ g(x)dotg(pi) c. (g(x))/(g(pi)) d. g(x)+g(pi)
If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to
If g(x)=int_0^xcos^4tdt , then g(x+pi) equals (a)g(x)+g(pi) (b) g(x)-g(pi) (c)g(x)g(pi) (d) (g(x))/(g(pi))