Home
Class 12
MATHS
Evaluate int(-pi)^(pi)(xsinx)/(e^(x)+1...

Evaluate
`int_(-pi)^(pi)(xsinx)/(e^(x)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{-\pi}^{\pi} \frac{x \sin x}{e^x + 1} \, dx, \] we can utilize the property of definite integrals which states that \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] In this case, \( a = -\pi \) and \( b = \pi \), so \( a + b = 0 \). Therefore, we can rewrite the integral as: \[ I = \int_{-\pi}^{\pi} \frac{(-x) \sin(-x)}{e^{-x} + 1} \, dx. \] Since \( \sin(-x) = -\sin(x) \), we have: \[ I = \int_{-\pi}^{\pi} \frac{-x (-\sin x)}{e^{-x} + 1} \, dx = \int_{-\pi}^{\pi} \frac{x \sin x}{e^{-x} + 1} \, dx. \] Now, we can denote this new integral as \( I_2 \): \[ I_2 = \int_{-\pi}^{\pi} \frac{x \sin x}{e^{-x} + 1} \, dx. \] Next, we can add the two integrals \( I \) and \( I_2 \): \[ 2I = \int_{-\pi}^{\pi} \left( \frac{x \sin x}{e^x + 1} + \frac{x \sin x}{e^{-x} + 1} \right) \, dx. \] To combine the fractions, we find a common denominator: \[ 2I = \int_{-\pi}^{\pi} \frac{x \sin x (e^{-x} + 1) + x \sin x (e^x + 1)}{(e^x + 1)(e^{-x} + 1)} \, dx. \] This simplifies to: \[ 2I = \int_{-\pi}^{\pi} \frac{x \sin x (e^{-x} + e^x + 2)}{(e^x + 1)(e^{-x} + 1)} \, dx. \] Now, observe that \( e^{-x} + e^x = 2 \cosh x \) and \( (e^x + 1)(e^{-x} + 1) = e^x + e^{-x} + 2 = 2 \cosh x + 2 \). Thus, we can rewrite \( 2I \) as: \[ 2I = \int_{-\pi}^{\pi} \frac{x \sin x (2 \cosh x + 2)}{2(\cosh x + 1)} \, dx. \] This simplifies to: \[ I = \int_{-\pi}^{\pi} \frac{x \sin x}{\cosh x + 1} \, dx. \] Now, since \( x \sin x \) is an odd function (as \( x \) is odd and \( \sin x \) is odd), the integral of an odd function over a symmetric interval around zero is zero: \[ I = 0. \] Thus, the final answer is: \[ \int_{-\pi}^{\pi} \frac{x \sin x}{e^x + 1} \, dx = 0. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 8:|6 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-I)|13 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 3:|5 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi)^( pi)(x sin xdx)/(e^(x)+1)

Evaluate int_(0)^(pi)(xsinx)/((1+cos^(2)x))dx .

Evaluate: int_(-pi/2)^( pi/2)(x sin x)/(e^(x)+1)dx

Evaluate : int_(-pi/2)^( pi/2)(cos x)/(1+e^(x))dx

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

int_(-pi//2)^(pi//2) (cos x)/(1+e^(x))dx=

Evaluate: int_(-pi/2)^( pi/2)|sin x|dx

Evaluate : int_(-pi/3)^(pi/3)sin^3 x dx

Evaluate: int_(-pi//2)^(pi//2)1/(1+e^(sinx))dx