Home
Class 12
MATHS
Let the definite integral be defined by ...

Let the definite integral be defined by the formula `int_(a)^(b)f(x)dx=(b-a)/2(f(a)+f(b))`. For more accurate result, for `c epsilon (a,b), ` we can use `int_(a)^(b)f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx=F(c)` so that for `c=(a+b)/2` we get `int_(a)^(b)f(x)dx=(b-a)/4(f(a)+f(b)+2f(c))`.
If `f''(x)lt0 AA x epsilon (a,b)` and `c` is `a` point such that `altcltb`, and `(c,f(c))` is the point lying on the curve for which `F(c)` is maximum then `f'(c)` is equal to

A

`(f(b)-f(a))/(b-a)`

B

`(2(f(b)f(a)))/(b-a)`

C

`(2f(b)-f(a))/(2b-a)`

D

0

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise COMPREHENSION I:|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Property 3:int_(a)^(b)f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx

int_(a + c)^(b+c) f(x)dx=

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

If f(a+b-x)=f(x) , then int_(a)^(b)x f(x)dx=