Home
Class 12
MATHS
If f(x)={{:(x-2",","for "x ge0),((x^(2))...

If `f(x)={{:(x-2",","for "x ge0),((x^(2))/(4)-2","," for "x lt0):}`, then find area bounded by `y=|f(x)|` and x - axis.

Text Solution

AI Generated Solution

The correct Answer is:
To find the area bounded by \( y = |f(x)| \) and the x-axis, we first need to analyze the function \( f(x) \) given by: \[ f(x) = \begin{cases} x - 2 & \text{for } x \geq 0 \\ \frac{x^2}{4} - 2 & \text{for } x < 0 \end{cases} \] ### Step 1: Find the points where \( f(x) = 0 \) 1. For \( x \geq 0 \): \[ x - 2 = 0 \implies x = 2 \] 2. For \( x < 0 \): \[ \frac{x^2}{4} - 2 = 0 \implies \frac{x^2}{4} = 2 \implies x^2 = 8 \implies x = -2\sqrt{2} \text{ (since } x < 0\text{)} \] ### Step 2: Determine the intervals for integration The function \( f(x) \) changes at \( x = -2\sqrt{2} \) and \( x = 2 \). We will calculate the area in two parts: from \( -2\sqrt{2} \) to \( 0 \) and from \( 0 \) to \( 2 \). ### Step 3: Calculate the area from \( -2\sqrt{2} \) to \( 0 \) In this interval, \( f(x) = \frac{x^2}{4} - 2 \). The area under the curve is given by: \[ \text{Area}_1 = \int_{-2\sqrt{2}}^{0} |f(x)| \, dx = \int_{-2\sqrt{2}}^{0} \left(2 - \frac{x^2}{4}\right) \, dx \] ### Step 4: Calculate the area from \( 0 \) to \( 2 \) In this interval, \( f(x) = x - 2 \). The area under the curve is given by: \[ \text{Area}_2 = \int_{0}^{2} |f(x)| \, dx = \int_{0}^{2} (2 - x) \, dx \] ### Step 5: Evaluate the integrals 1. **For Area 1:** \[ \text{Area}_1 = \int_{-2\sqrt{2}}^{0} \left(2 - \frac{x^2}{4}\right) \, dx \] \[ = \left[ 2x - \frac{x^3}{12} \right]_{-2\sqrt{2}}^{0} \] \[ = \left( 0 - 0 \right) - \left( 2(-2\sqrt{2}) - \frac{(-2\sqrt{2})^3}{12} \right) \] \[ = 4\sqrt{2} + \frac{8\sqrt{2}}{12} = 4\sqrt{2} + \frac{2\sqrt{2}}{3} = 4\sqrt{2} + \frac{2\sqrt{2}}{3} \] \[ = \frac{12\sqrt{2}}{3} + \frac{2\sqrt{2}}{3} = \frac{14\sqrt{2}}{3} \] 2. **For Area 2:** \[ \text{Area}_2 = \int_{0}^{2} (2 - x) \, dx \] \[ = \left[ 2x - \frac{x^2}{2} \right]_{0}^{2} \] \[ = \left( 4 - 2 \right) - (0) = 2 \] ### Step 6: Total Area The total area \( A \) is the sum of the two areas: \[ A = \text{Area}_1 + \text{Area}_2 = \frac{14\sqrt{2}}{3} + 2 \] ### Final Answer Thus, the area bounded by \( y = |f(x)| \) and the x-axis is: \[ A = \frac{14\sqrt{2}}{3} + 2 \]
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)|125 Videos
  • TIPS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(x^(2)",","for "x ge0),(x",","for "x lt 0):} , then fof(x) is given by

If f(x)={:{(x", for " x ge 0),(x^(2)", for " x lt 0):} , then f is

If f(x)={{:(2+x",", x ge0),(4-x",", x lt 0):}, then f (f(x)) is given by :

If f(x) = {(x,",", x ge 0),(x^(2),",",x lt 0):} , then f(x) is

Let f(x)={{:(x^(2)+4,":",xlt0),(4-2x,":",xge0):} then the area bounded by y=f(x) and the x - axis from x=-1" to "x=3 is equal to

Let f(x)={{:(2^([x]),, x lt0),(2^([-x]),,x ge0):} , then the area bounded by y=f(x) and y=0 is

If f(x) = {{:(x - 3",",x lt 0),(x^(2) - 3x + 2",",x ge 0):} , then g(x) = f(|x|) is

If f(x)={(2x", for " x lt 0),(2x+1", for " x ge 0):} , then

If {:(f(x)=3x^(2)", if "0 le x le 2),(" "=16-2x", if " x ge 2","):} then area bounded by the graph of y=f(x) , the X-axis and the line x = 3 is (in sq. u.)

FIITJEE-TIPS-NUERICAL DECIMAL BASED QUATIONS
  1. If f(x)={{:(x-2",","for "x ge0),((x^(2))/(4)-2","," for "x lt0):}, the...

    Text Solution

    |

  2. If {x} denotes the fractiona part of x, then {(4^(2n))/(15)}, n in N, ...

    Text Solution

    |

  3. Period of sin.(pi)/(4)[x]+sin.(pix)/(2)+tan.(pi)/(3)+sin.(pit)/(4) is

    Text Solution

    |

  4. The period of the function f(t)=sin.(pit)/(3)+sin.(pit)/(4) is

    Text Solution

    |

  5. The value of lim(xrarroo)(x^(3)sin(1//x)-2x^(2))/(1+3x^(2)) is

    Text Solution

    |

  6. Let fp(alpha)=(cos(alpha/p^2)+i sin(alpha/p^2))+((cos)(2alpha)/p^2+isi...

    Text Solution

    |

  7. Evaluate underset(xto0)lim(1-cos(1-cosx))/(x^(4)).

    Text Solution

    |

  8. The value of int(-1)^(1)g(x)-g-(-x)+[x]dx where [.] is the greatest fu...

    Text Solution

    |

  9. Tet alpha, beta and gamma be the roots of f(x) = x^3 + x^2 - 5x - 1 = ...

    Text Solution

    |

  10. If a, b, c, d, e and f are non negative real numbers such that a +b+...

    Text Solution

    |

  11. Let f(x)=cospix+10x+3x^2+x^3,-2lt=xlt=3. The absolute minimum value of...

    Text Solution

    |

  12. If int(sqrt(cotx))/(cosx cos x)dx=a sqrt(cotx)+b, then

    Text Solution

    |

  13. If f(x+1)+f(x+7)=0, x in R , then possible value of t for which inta^(...

    Text Solution

    |

  14. f(x)={{:(3[x]-5(|x|)/(x)",",x ne0),(2",", x=0):}, then int(-3//2)^(2)f...

    Text Solution

    |

  15. If f(x)=x(x-1), 0 le x le 1, and f(x+1)=f(x) AA x in R, then |int(2)^(...

    Text Solution

    |

  16. int2^3(x^2dx)/(2x^2-10 x+25)

    Text Solution

    |

  17. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  18. Let f:(0, oo) rarr R and F(x^(2))=int(0)^(x^(2))f(t)dt. " If "F(x^(2))...

    Text Solution

    |

  19. intx^6sin(5x^7)dx=k/5cos(5x^7)+c ,then k=

    Text Solution

    |

  20. If int(sqrt(cotx))/(sinx cos x)dx=A sqrt(cotx)+B, then A is equal to

    Text Solution

    |

  21. If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b ,t h...

    Text Solution

    |