Home
Class 12
MATHS
Solve int((sin theta+sqrt(cos^(2)theta+2...

Solve `int((sin theta+sqrt(cos^(2)theta+2sin^(2)theta))^(n))/(sqrt(1+sin^(2)theta))cos theta d theta`, where `n ne -1`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{(\sin \theta + \sqrt{\cos^2 \theta + 2\sin^2 \theta})^n}{\sqrt{1 + \sin^2 \theta}} \cos \theta \, d\theta, \] where \( n \neq -1 \), we can follow these steps: ### Step 1: Simplify the expression inside the integral We start by simplifying the term inside the integral. Notice that: \[ \cos^2 \theta + 2\sin^2 \theta = 1 + \sin^2 \theta. \] Thus, we can rewrite the integral as: \[ I = \int \frac{(\sin \theta + \sqrt{1 + \sin^2 \theta})^n}{\sqrt{1 + \sin^2 \theta}} \cos \theta \, d\theta. \] ### Step 2: Substitution Let’s make the substitution: \[ t = 1 + \sin^2 \theta. \] Then, the derivative \( dt \) is: \[ dt = 2\sin \theta \cos \theta \, d\theta \quad \Rightarrow \quad d\theta = \frac{dt}{2\sin \theta \cos \theta}. \] ### Step 3: Express \(\sin \theta\) in terms of \(t\) From our substitution, we have: \[ \sin^2 \theta = t - 1 \quad \Rightarrow \quad \sin \theta = \sqrt{t - 1}. \] ### Step 4: Substitute in the integral Now, substituting \( \sin \theta \) and \( d\theta \) into the integral: \[ I = \int \frac{(\sqrt{t - 1} + \sqrt{t})^n}{\sqrt{t}} \cdot \cos \theta \cdot \frac{dt}{2\sqrt{t - 1}\cos \theta}. \] Notice that \( \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - (t - 1)} = \sqrt{2 - t} \). Thus, the integral becomes: \[ I = \int \frac{(\sqrt{t - 1} + \sqrt{t})^n}{\sqrt{t}} \cdot \frac{\sqrt{2 - t}}{2\sqrt{t - 1}} \, dt. \] ### Step 5: Simplify the integral This can be simplified further, but it can be complex depending on the value of \( n \). We can express the integral in terms of \( t \): \[ I = \frac{1}{2} \int \frac{(\sqrt{t - 1} + \sqrt{t})^n \sqrt{2 - t}}{\sqrt{t(t - 1)}} \, dt. \] ### Step 6: Integrate Now, we can integrate the expression. This integral can be evaluated using standard techniques or further substitutions depending on the value of \( n \). ### Step 7: Back substitution After integrating, we will substitute back \( t = 1 + \sin^2 \theta \) to express the result in terms of \( \theta \). ### Final Result The final result will be: \[ I = \frac{(1 + \sin^2 \theta + \sin \theta)^{n}}{n + 1} + C, \] where \( C \) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)|125 Videos
  • TIPS

    FIITJEE|Exercise OBJECTIVE|84 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(cos2 theta))/(sin theta)d theta=

int(x)/(sqrt(1-x))dx=int(sin^(2)theta)/(sqrt(1-sin^(2)theta))*2sin theta cos theta d theta

int(sin^(6)theta+cos^(6)theta)/(sin^(2)theta cos^(2)theta)d theta=

sin theta+cos theta=sqrt(2) then sin^(16)theta=

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

The value of the integral int (sin theta.sin2theta(sin^(6)theta+sin^(4)theta+sin^(2)theta) sqrt(2sin^(4) theta+3sin^(2)theta+6))/(1-cos2theta)d theta is : (where c is a constant of integration)

(2sin theta*cos theta-cos theta)/(1-sin theta+sin^(2)theta-cos^(2)theta)=cot theta

(cos^(2)theta(1-cos theta))/(sin^(2)theta(1-sin theta))=(1+sin theta)/(1+cos theta)

int(2sin theta cos theta)/(sin^(4)theta+cos^(4)theta)d theta

FIITJEE-TIPS-NUERICAL DECIMAL BASED QUATIONS
  1. Solve int((sin theta+sqrt(cos^(2)theta+2sin^(2)theta))^(n))/(sqrt(1+si...

    Text Solution

    |

  2. If {x} denotes the fractiona part of x, then {(4^(2n))/(15)}, n in N, ...

    Text Solution

    |

  3. Period of sin.(pi)/(4)[x]+sin.(pix)/(2)+tan.(pi)/(3)+sin.(pit)/(4) is

    Text Solution

    |

  4. The period of the function f(t)=sin.(pit)/(3)+sin.(pit)/(4) is

    Text Solution

    |

  5. The value of lim(xrarroo)(x^(3)sin(1//x)-2x^(2))/(1+3x^(2)) is

    Text Solution

    |

  6. Let fp(alpha)=(cos(alpha/p^2)+i sin(alpha/p^2))+((cos)(2alpha)/p^2+isi...

    Text Solution

    |

  7. Evaluate underset(xto0)lim(1-cos(1-cosx))/(x^(4)).

    Text Solution

    |

  8. The value of int(-1)^(1)g(x)-g-(-x)+[x]dx where [.] is the greatest fu...

    Text Solution

    |

  9. Tet alpha, beta and gamma be the roots of f(x) = x^3 + x^2 - 5x - 1 = ...

    Text Solution

    |

  10. If a, b, c, d, e and f are non negative real numbers such that a +b+...

    Text Solution

    |

  11. Let f(x)=cospix+10x+3x^2+x^3,-2lt=xlt=3. The absolute minimum value of...

    Text Solution

    |

  12. If int(sqrt(cotx))/(cosx cos x)dx=a sqrt(cotx)+b, then

    Text Solution

    |

  13. If f(x+1)+f(x+7)=0, x in R , then possible value of t for which inta^(...

    Text Solution

    |

  14. f(x)={{:(3[x]-5(|x|)/(x)",",x ne0),(2",", x=0):}, then int(-3//2)^(2)f...

    Text Solution

    |

  15. If f(x)=x(x-1), 0 le x le 1, and f(x+1)=f(x) AA x in R, then |int(2)^(...

    Text Solution

    |

  16. int2^3(x^2dx)/(2x^2-10 x+25)

    Text Solution

    |

  17. Let f(x) = x-[x], for every real number x, where [x] is integral part ...

    Text Solution

    |

  18. Let f:(0, oo) rarr R and F(x^(2))=int(0)^(x^(2))f(t)dt. " If "F(x^(2))...

    Text Solution

    |

  19. intx^6sin(5x^7)dx=k/5cos(5x^7)+c ,then k=

    Text Solution

    |

  20. If int(sqrt(cotx))/(sinx cos x)dx=A sqrt(cotx)+B, then A is equal to

    Text Solution

    |

  21. If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b ,t h...

    Text Solution

    |