Home
Class 12
MATHS
Let f:R rarr [0, (pi)/(2)) be a function...

Let `f:R rarr [0, (pi)/(2))` be a function defined by `f(x)=tan^(-1)(x^(2)+x+a)`. If f is onto, then a is equal to

A

0

B

1

C

`1//2`

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( a \) such that the function \( f(x) = \tan^{-1}(x^2 + x + a) \) is onto, meaning it covers the entire range from \( 0 \) to \( \frac{\pi}{2} \). ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(x) = \tan^{-1}(x^2 + x + a) \) maps real numbers \( x \) to the interval \( [0, \frac{\pi}{2}) \). The output of the function approaches \( \frac{\pi}{2} \) as its argument approaches infinity. 2. **Condition for Onto Function**: For \( f \) to be onto, the expression \( x^2 + x + a \) must be non-negative for all \( x \) in \( \mathbb{R} \). This ensures that \( \tan^{-1}(x^2 + x + a) \) can take all values from \( 0 \) to \( \frac{\pi}{2} \). 3. **Finding the Discriminant**: The quadratic expression \( x^2 + x + a \) can be analyzed using its discriminant: \[ D = b^2 - 4ac = 1^2 - 4(1)(a) = 1 - 4a \] For the quadratic to be non-negative for all \( x \), the discriminant must be less than or equal to zero: \[ D \leq 0 \implies 1 - 4a \leq 0 \] 4. **Solving the Inequality**: Rearranging the inequality gives: \[ 1 \leq 4a \implies a \geq \frac{1}{4} \] 5. **Conclusion**: The minimum value of \( a \) that satisfies the condition for \( f \) to be onto is \( a = \frac{1}{4} \). Thus, the value of \( a \) is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|37 Videos
  • TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)|125 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function is defined by f(x)=x^(2)-(x^(2))/(1+x^(2)), then

Let f:R rarr R be a function defined by f(x)=(x^(2)+2x+5)/(x^(2)+x+1) is

Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2) , then f is

Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x + a)". If " f(x) is an onto function . then the value of a si

Let f:R rarr[0,(pi)/(2)) be defined by f(x)=tan^(-1)(x^(2)+x+a)* Then the set of values of a for which f is onto is (a)(0,oo)(b)[2,1](c)[(1)/(4),oo](d) none of these

Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2) . Then f is

Let f:R rarr B be a functio defined by f(x)=tan^(-1).(2x)/(1+x^(2)) , then f is both one - one and onto when B is in the interval

let f:R rarr R be a continuous function defined by f(x)=(1)/(e^(x)+2e^(-x))

Let f:(-1,1)rarr B be a function defined by f(x)=tan^(-1)((2x)/(1-x^(2))). Then f is both one- one and onto when B is the interval

Let f:R rarr B , be a function defined f(x)=tan^(-1).(2x)/(sqrt3(1+x^(2))) , then f is both one - one and onto when B, is the interval

FIITJEE-TIPS-OBJECTIVE
  1. The domain of definition of the function f(x) given by the equation 2^...

    Text Solution

    |

  2. Let f:R rarr R" be defined by "f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)). T...

    Text Solution

    |

  3. Let f:R rarr [0, (pi)/(2)) be a function defined by f(x)=tan^(-1)(x^(2...

    Text Solution

    |

  4. If a(1), a(2),…….a(n) are real numbers and the function f(x)=(x-a(1))^...

    Text Solution

    |

  5. The function f:R rarr R, f(x)=x^(2) is

    Text Solution

    |

  6. f(x)=(cosx)/([(2x)/pi]+1/2), where x is not an integral multiple of pi...

    Text Solution

    |

  7. Let f(x) be a function such that f(x), f'(x) and f''(x) are in G.P., t...

    Text Solution

    |

  8. Let f(x)=((e^(xln(2^(x)-1)-(2^(x)-1)^(x)sinx))/(e^(xlnx)))^(1//x). The...

    Text Solution

    |

  9. If f(n+1)=1/2{f(n)+9/(f(n))},n in N , and f(n)>0fora l ln in N , t...

    Text Solution

    |

  10. Let f(x)=(tanx)/(x), then log(e)(lim(xrarr0)([f(x)]+x^(2))^((1)/({f(x)...

    Text Solution

    |

  11. The point(s) on the curve y^3+\ 3x^2=12 y where the tangent is v...

    Text Solution

    |

  12. Let f(x)=(4-x^(2))^(2//3), then f has a

    Text Solution

    |

  13. Let f(x)=x^2-bx+ c, b is a odd positive integer, f(x) = 0 have two pri...

    Text Solution

    |

  14. int((lnx-1)/((lnx)^(2)+1))dx is equal to

    Text Solution

    |

  15. The value of int(cos^(3)x)/(sin^(2)x+sinx)dx is equal to:

    Text Solution

    |

  16. inte^(x)(4x^(2)+8x+3)dx equals

    Text Solution

    |

  17. If int(dx)/(x^(22)(x^7-6))=A{ln(p)^6+9p^2-2p^3-18 p}+c, then

    Text Solution

    |

  18. int (x^(2)+sin^(2)x)/(1+x^(2))sec^(2)x dx

    Text Solution

    |

  19. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  20. The solution of the differential equation y^(2)dx+(x^(2)-xy + y^(2))dy...

    Text Solution

    |