Home
Class 12
MATHS
Let f(x) be a function such that f(x), f...

Let `f(x)` be a function such that `f(x), f'(x) and f''(x)` are in G.P., then function f(x) is

A

constant

B

logarithmic

C

exponential

D

linear

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the function \( f(x) \) such that \( f(x) \), \( f'(x) \), and \( f''(x) \) are in geometric progression (G.P.). ### Step-by-Step Solution: 1. **Understanding Geometric Progression (G.P.):** If \( f(x) \), \( f'(x) \), and \( f''(x) \) are in G.P., then the relationship can be expressed as: \[ (f'(x))^2 = f(x) \cdot f''(x) \] 2. **Assuming a General Form of \( f(x) \):** Let's assume \( f(x) = e^{mx} \), where \( m \) is a constant. This is a common assumption because exponential functions often yield simple derivatives. 3. **Finding the Derivatives:** - The first derivative \( f'(x) \) is: \[ f'(x) = m e^{mx} \] - The second derivative \( f''(x) \) is: \[ f''(x) = m^2 e^{mx} \] 4. **Substituting into the G.P. Condition:** Now we substitute \( f(x) \), \( f'(x) \), and \( f''(x) \) into the G.P. condition: \[ (f'(x))^2 = f(x) \cdot f''(x) \] This gives: \[ (m e^{mx})^2 = e^{mx} \cdot (m^2 e^{mx}) \] Simplifying both sides: \[ m^2 e^{2mx} = m^2 e^{2mx} \] This is true for all \( x \). 5. **Conclusion:** Since our assumption \( f(x) = e^{mx} \) satisfies the condition that \( f(x) \), \( f'(x) \), and \( f''(x) \) are in G.P., we conclude that the function \( f(x) \) can be expressed as: \[ f(x) = e^{mx} \quad \text{for some constant } m. \] ### Final Answer: The function \( f(x) \) is of the form \( f(x) = e^{mx} \) where \( m \) is a constant.
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|37 Videos
  • TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)|125 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a function such that,f(0)=f'(0)=0,f''(x)=sec^(4)x+4 then the function is

Let f(x) be a function such that f'(a) ne 0 . Then , at x=a, f(x)

Let f(x) be a function such that f(x+y)=f(x)+f(y) and f(x)=sin x g(x)" fora ll "x,y in R . If g(x) is a continuous functions such that g(0)=k, then f'(x) is equal to

Let f be a polynomial function such that f(3x)=f'(x);f''(x), for all x in R. Then : .Then :

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1+x) then (1) g(x) is an odd function (2)g(x) is an even function (3) graph of f(x) is symmetrical about the line x=1 (4) f'(1)=0

Let f(x) and g(x) be two functions such that g(x)=([x]f(x))/([x]f(x)) and g(x) is a periodic function with fundamental time period 'T', then minimum value of 'T is

Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be a function that satisfies f(x)+g(x)=x^(2). Then the value of the integral int_(0)^(1)f(x)g(x)dx, is

" Let "f:A rarr R" be a function such that "f(-x)=f(x),AA X in A" then "f" is "

FIITJEE-TIPS-OBJECTIVE
  1. The function f:R rarr R, f(x)=x^(2) is

    Text Solution

    |

  2. f(x)=(cosx)/([(2x)/pi]+1/2), where x is not an integral multiple of pi...

    Text Solution

    |

  3. Let f(x) be a function such that f(x), f'(x) and f''(x) are in G.P., t...

    Text Solution

    |

  4. Let f(x)=((e^(xln(2^(x)-1)-(2^(x)-1)^(x)sinx))/(e^(xlnx)))^(1//x). The...

    Text Solution

    |

  5. If f(n+1)=1/2{f(n)+9/(f(n))},n in N , and f(n)>0fora l ln in N , t...

    Text Solution

    |

  6. Let f(x)=(tanx)/(x), then log(e)(lim(xrarr0)([f(x)]+x^(2))^((1)/({f(x)...

    Text Solution

    |

  7. The point(s) on the curve y^3+\ 3x^2=12 y where the tangent is v...

    Text Solution

    |

  8. Let f(x)=(4-x^(2))^(2//3), then f has a

    Text Solution

    |

  9. Let f(x)=x^2-bx+ c, b is a odd positive integer, f(x) = 0 have two pri...

    Text Solution

    |

  10. int((lnx-1)/((lnx)^(2)+1))dx is equal to

    Text Solution

    |

  11. The value of int(cos^(3)x)/(sin^(2)x+sinx)dx is equal to:

    Text Solution

    |

  12. inte^(x)(4x^(2)+8x+3)dx equals

    Text Solution

    |

  13. If int(dx)/(x^(22)(x^7-6))=A{ln(p)^6+9p^2-2p^3-18 p}+c, then

    Text Solution

    |

  14. int (x^(2)+sin^(2)x)/(1+x^(2))sec^(2)x dx

    Text Solution

    |

  15. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  16. The solution of the differential equation y^(2)dx+(x^(2)-xy + y^(2))dy...

    Text Solution

    |

  17. int(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

    Text Solution

    |

  18. Let f(x)={{:(x|x|",", x le -1),([x+1]+[1-x]",",-1ltxlt1),(-x|x|",",x g...

    Text Solution

    |

  19. If f(x)=Asin((pix)/2)+B, f'(1/2)=sqrt2 and int0^1 f(x)dx=(2A)/pi then ...

    Text Solution

    |

  20. The value of int(a)^(b)(x-a)^(3)(b-x)^(4)dx is ((b-a)^(m))/(n). Then (...

    Text Solution

    |