Home
Class 12
MATHS
Let f(x) be maximum and g(x) be minimum ...

Let f(x) be maximum and g(x) be minimum of `{x|x|, x^(2)|x|}` then `int_(-1)^(1)[f(x)-g(x)]dx=`

A

`(1)/(12)`

B

`(1)/(3)`

C

`(2)/(3)`

D

`(7)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral of the difference between the maximum function \( f(x) \) and the minimum function \( g(x) \) over the interval \([-1, 1]\). ### Step 1: Define the functions \( f(x) \) and \( g(x) \) Given: - \( f(x) = \max\{|x|^3, x^2|x|\} \) - \( g(x) = \min\{|x|^3, x^2|x|\} \) We will analyze the two cases separately: when \( x \) is negative and when \( x \) is positive. ### Step 2: Analyze the case when \( x < 0 \) For \( x < 0 \): - \( |x| = -x \) - \( |x|^3 = (-x)^3 = -x^3 \) - \( x^2|x| = x^2(-x) = -x^3 \) Thus, for \( x < 0 \): - \( f(x) = \max\{-x^3, -x^3\} = -x^3 \) - \( g(x) = \min\{-x^3, -x^3\} = -x^3 \) ### Step 3: Analyze the case when \( x > 0 \) For \( x > 0 \): - \( |x| = x \) - \( |x|^3 = x^3 \) - \( x^2|x| = x^2 \cdot x = x^3 \) Thus, for \( x > 0 \): - \( f(x) = \max\{x^3, x^3\} = x^3 \) - \( g(x) = \min\{x^3, x^3\} = x^3 \) ### Step 4: Combine the results From the analysis: - For \( x < 0 \): \( f(x) = -x^3 \) and \( g(x) = -x^3 \) - For \( x > 0 \): \( f(x) = x^3 \) and \( g(x) = x^3 \) ### Step 5: Set up the integral Now we need to compute the integral: \[ \int_{-1}^{1} [f(x) - g(x)] \, dx \] Since \( f(x) = g(x) \) for both intervals, we can break the integral into two parts: \[ \int_{-1}^{0} [f(x) - g(x)] \, dx + \int_{0}^{1} [f(x) - g(x)] \, dx \] ### Step 6: Evaluate the integrals 1. For \( x < 0 \): \[ f(x) - g(x) = -x^3 - (-x^3) = 0 \] Thus, \[ \int_{-1}^{0} [f(x) - g(x)] \, dx = \int_{-1}^{0} 0 \, dx = 0 \] 2. For \( x > 0 \): \[ f(x) - g(x) = x^3 - x^3 = 0 \] Thus, \[ \int_{0}^{1} [f(x) - g(x)] \, dx = \int_{0}^{1} 0 \, dx = 0 \] ### Step 7: Combine the results Combining both parts: \[ \int_{-1}^{1} [f(x) - g(x)] \, dx = 0 + 0 = 0 \] ### Final Answer The value of the integral is: \[ \int_{-1}^{1} [f(x) - g(x)] \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|37 Videos
  • TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)|125 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

If f(x)+f(pi-x)=1 and g(x)+g(pi-x)=1 , then : int_(0)^(pi)[f(x)+g(x)]dx=

int{f(x)g'(x)-f'g(x)}dx equals

f and g be two positive real valued functions defined on [-1,1] such that f(-x)=(1)/(f(x)) and g is an even function with int_(-1)^(1)g(x)dx = 1 then I = int_(-1)^(1)f(x)g(x)dx satisfies

f and g be two positive real valued functions defined on [-1,1] such that f(-x)=(1)/(f(x)) and g is an even function with int_(-1)^(1)g(x)dx=1 then I=int _(-1)^(1) f(x)g(x)dx satisfies

If f(x) and g(x) are continuous functions satisfying f(x) = f(a-x) and g(x) + g(a-x) = 2 , then what is int_(0)^(a) f(x) g(x)dx equal to ?

If g(1)=g(2), then int_(1)^(2)[f{g(x)}]^(-1)f'{g(x)}g'(x)dx is equal to

Let f(x)=minimum{|x|,1-|x|,(1)/(4)} for x varepsilon R then the value of int_(-1)^(1)f(x)dx is equal to

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

FIITJEE-TIPS-OBJECTIVE
  1. If f(x)=Asin((pix)/2)+B, f'(1/2)=sqrt2 and int0^1 f(x)dx=(2A)/pi then ...

    Text Solution

    |

  2. The value of int(a)^(b)(x-a)^(3)(b-x)^(4)dx is ((b-a)^(m))/(n). Then (...

    Text Solution

    |

  3. Let f(x) be maximum and g(x) be minimum of {x|x|, x^(2)|x|} then int(-...

    Text Solution

    |

  4. If int(cos^(2)x)/(sin^(6)x)dx=A cot^(5)x+B cot^(3)x+k, then A+B equals

    Text Solution

    |

  5. If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) ...

    Text Solution

    |

  6. int (sin2x)/(3+4cosx)^3 dx=

    Text Solution

    |

  7. (x dy)/(x^2+y^2)=(y/(x^2+y^2)-1)dx

    Text Solution

    |

  8. Let R be the set of all real numbers. The function f:Rrarr R defined b...

    Text Solution

    |

  9. The range of the function f(x)=1/abs(sinx)+1/abs(cosx) is

    Text Solution

    |

  10. f(x)=(x)/(sinx ) and g(x)=(x)/(tanx) , where 0 lt x le 1 then in the...

    Text Solution

    |

  11. Through any point (x, y) of a curve which passes through the origin, l...

    Text Solution

    |

  12. The function f(x)=cos x - 2ax is monotonically decreasing when-

    Text Solution

    |

  13. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |

  14. Let f be a positive function. Let I1=int(1-k)^k xf([x(1-x)]dx , I2=i...

    Text Solution

    |

  15. The vaue of int(0)^(1)xlogx dx must be

    Text Solution

    |

  16. int dx/sqrt(x+xsqrtx) equals

    Text Solution

    |

  17. If g be a differentiable function stisfying intg(x)dx=g(x)+c, then lim...

    Text Solution

    |

  18. Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = ...

    Text Solution

    |

  19. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p a prime number and [...

    Text Solution

    |

  20. The minimum value of (a^(2))/(cos^(2)x)+(b^(2))/(sin^(2)x)

    Text Solution

    |