Home
Class 12
MATHS
If int(cos^(2)x)/(sin^(6)x)dx=A cot^(5)x...

If `int(cos^(2)x)/(sin^(6)x)dx=A cot^(5)x+B cot^(3)x+k`, then `A+B` equals

A

`(8)/(15)`

B

`-(8)/(15)`

C

`(15)/(8)`

D

`-(15)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\cos^2 x}{\sin^6 x} \, dx\) and express it in the form \(A \cot^5 x + B \cot^3 x + k\), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int \frac{\cos^2 x}{\sin^6 x} \, dx \] We can rewrite \(\cos^2 x\) as \(\frac{1}{\sin^2 x} - \frac{1}{\tan^2 x}\) to facilitate the integration. ### Step 2: Use trigonometric identities Using the identity \(\cot x = \frac{\cos x}{\sin x}\), we can express \(\cos^2 x\) in terms of \(\cot x\): \[ \cos^2 x = \frac{1}{\sin^2 x} \cdot \sin^2 x = \cot^2 x \cdot \sin^4 x \] Thus, we can rewrite the integral as: \[ \int \frac{\cot^2 x}{\sin^4 x} \, dx \] ### Step 3: Change variables Let \(t = \tan x\). Then, \(dt = \sec^2 x \, dx\) or \(dx = \frac{dt}{1 + t^2}\). Also, \(\sin x = \frac{t}{\sqrt{1+t^2}}\) and \(\cos x = \frac{1}{\sqrt{1+t^2}}\). Therefore, we can express \(\sin^6 x\) and \(\cos^2 x\) in terms of \(t\): \[ \sin^6 x = \left(\frac{t}{\sqrt{1+t^2}}\right)^6 = \frac{t^6}{(1+t^2)^3} \] \[ \cos^2 x = \frac{1}{1+t^2} \] ### Step 4: Substitute into the integral Substituting these into the integral gives: \[ \int \frac{\frac{1}{1+t^2}}{\frac{t^6}{(1+t^2)^3}} \cdot \frac{dt}{1+t^2} = \int \frac{(1+t^2)^2}{t^6} \, dt \] ### Step 5: Simplify the integral This simplifies to: \[ \int \left(\frac{1}{t^6} + \frac{2}{t^4} + \frac{1}{t^2}\right) \, dt \] ### Step 6: Integrate term by term Now we integrate each term: 1. \(\int t^{-6} \, dt = -\frac{1}{5t^5}\) 2. \(\int 2t^{-4} \, dt = -\frac{2}{3t^3}\) 3. \(\int t^{-2} \, dt = -\frac{1}{t}\) Putting it all together: \[ -\frac{1}{5t^5} - \frac{2}{3t^3} - \frac{1}{t} + C \] ### Step 7: Substitute back for \(t\) Recall that \(t = \tan x\), so we substitute back: \[ -\frac{1}{5 \tan^5 x} - \frac{2}{3 \tan^3 x} - \frac{1}{\tan x} + C \] ### Step 8: Express in terms of cotangent Using \(\cot x = \frac{1}{\tan x}\), we rewrite the expression: \[ -\frac{1}{5 \cot^5 x} - \frac{2}{3 \cot^3 x} - \cot x + C \] ### Step 9: Identify coefficients From the expression, we can identify: - \(A = -\frac{1}{5}\) - \(B = -\frac{2}{3}\) ### Step 10: Calculate \(A + B\) Now, we calculate: \[ A + B = -\frac{1}{5} - \frac{2}{3} \] To add these fractions, we find a common denominator (15): \[ A + B = -\frac{3}{15} - \frac{10}{15} = -\frac{13}{15} \] Thus, the final answer is: \[ A + B = -\frac{13}{15} \]
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|37 Videos
  • TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)|125 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If int(cos^(2)x)/(sin^(6)x)dx=Acot^(5)x+Bcot^(3)x+k , then A+B equals

If int(cos^(4)x)/(sin^(2)x)dx=A cot x +B sin 2x +(C)/(2)x+D , then

int(cot x)/(log(sin x)dx)

int (cot x)/(log sin x)dx

If l=int sec^(2)x cos ec^(4)xdx=A cot^(3)x+B tan x+C cot x+D then

int(a sin^(3)x+b cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(a sin^(3)x-b cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(csc^(2)x)/((a+b cot x)^(5))dx

int cot(3x)sin(2x)dx

Evaluate: int(cot x)/(sin x)dx

FIITJEE-TIPS-OBJECTIVE
  1. The value of int(a)^(b)(x-a)^(3)(b-x)^(4)dx is ((b-a)^(m))/(n). Then (...

    Text Solution

    |

  2. Let f(x) be maximum and g(x) be minimum of {x|x|, x^(2)|x|} then int(-...

    Text Solution

    |

  3. If int(cos^(2)x)/(sin^(6)x)dx=A cot^(5)x+B cot^(3)x+k, then A+B equals

    Text Solution

    |

  4. If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) ...

    Text Solution

    |

  5. int (sin2x)/(3+4cosx)^3 dx=

    Text Solution

    |

  6. (x dy)/(x^2+y^2)=(y/(x^2+y^2)-1)dx

    Text Solution

    |

  7. Let R be the set of all real numbers. The function f:Rrarr R defined b...

    Text Solution

    |

  8. The range of the function f(x)=1/abs(sinx)+1/abs(cosx) is

    Text Solution

    |

  9. f(x)=(x)/(sinx ) and g(x)=(x)/(tanx) , where 0 lt x le 1 then in the...

    Text Solution

    |

  10. Through any point (x, y) of a curve which passes through the origin, l...

    Text Solution

    |

  11. The function f(x)=cos x - 2ax is monotonically decreasing when-

    Text Solution

    |

  12. Consider the integrals I(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx...

    Text Solution

    |

  13. Let f be a positive function. Let I1=int(1-k)^k xf([x(1-x)]dx , I2=i...

    Text Solution

    |

  14. The vaue of int(0)^(1)xlogx dx must be

    Text Solution

    |

  15. int dx/sqrt(x+xsqrtx) equals

    Text Solution

    |

  16. If g be a differentiable function stisfying intg(x)dx=g(x)+c, then lim...

    Text Solution

    |

  17. Let f:R->R be a function such that f((x+y)/3)=(f(x)+f(y))/3 ,f(0) = ...

    Text Solution

    |

  18. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p a prime number and [...

    Text Solution

    |

  19. The minimum value of (a^(2))/(cos^(2)x)+(b^(2))/(sin^(2)x)

    Text Solution

    |

  20. The maximum value of (logx)/xd is

    Text Solution

    |