Home
Class 12
MATHS
lim(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(...

`lim_(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(cot((pi)/(2)sin^(2)x))` equals

A

`pi`

B

`-pi`

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate: \[ \lim_{x \to \frac{\pi}{2}} \frac{\cos\left(\frac{\pi}{2} \sin^2 x\right)}{\cot\left(\frac{\pi}{2} \sin^2 x\right)} \] ### Step 1: Analyze the limit First, we substitute \( x = \frac{\pi}{2} \): - \(\sin^2\left(\frac{\pi}{2}\right) = 1\) - Therefore, \(\frac{\pi}{2} \sin^2 x = \frac{\pi}{2}\) Now, we evaluate: - \(\cos\left(\frac{\pi}{2}\right) = 0\) - \(\cot\left(\frac{\pi}{2}\right) = 0\) This gives us the indeterminate form \(\frac{0}{0}\). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \(\lim_{x \to c} \frac{f(x)}{g(x)}\) results in \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), we can take the derivatives of the numerator and denominator: \[ \lim_{x \to \frac{\pi}{2}} \frac{f'(x)}{g'(x)} \] Let: - \(f(x) = \cos\left(\frac{\pi}{2} \sin^2 x\right)\) - \(g(x) = \cot\left(\frac{\pi}{2} \sin^2 x\right)\) ### Step 3: Differentiate the numerator and denominator 1. Differentiate \(f(x)\): \[ f'(x) = -\sin\left(\frac{\pi}{2} \sin^2 x\right) \cdot \frac{\pi}{2} \cdot 2 \sin x \cos x = -\pi \sin\left(\frac{\pi}{2} \sin^2 x\right) \sin x \cos x \] 2. Differentiate \(g(x)\): \[ g'(x) = -\csc^2\left(\frac{\pi}{2} \sin^2 x\right) \cdot \frac{\pi}{2} \cdot 2 \sin x \cos x = -\pi \sin x \cos x \csc^2\left(\frac{\pi}{2} \sin^2 x\right) \] ### Step 4: Substitute back into the limit Now we substitute \(f'(x)\) and \(g'(x)\) back into the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{-\pi \sin\left(\frac{\pi}{2} \sin^2 x\right) \sin x \cos x}{-\pi \sin x \cos x \csc^2\left(\frac{\pi}{2} \sin^2 x\right)} \] ### Step 5: Simplify the expression The \(-\pi \sin x \cos x\) terms cancel out: \[ \lim_{x \to \frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{2} \sin^2 x\right)}{\csc^2\left(\frac{\pi}{2} \sin^2 x\right)} = \lim_{x \to \frac{\pi}{2}} \sin\left(\frac{\pi}{2} \sin^2 x\right) \cdot \sin^2\left(\frac{\pi}{2} \sin^2 x\right) \] ### Step 6: Evaluate the limit Substituting \(x = \frac{\pi}{2}\): - \(\sin\left(\frac{\pi}{2}\right) = 1\) - Therefore, the limit evaluates to \(1\). ### Final Answer Thus, the limit is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|37 Videos
  • TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)|125 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr (pi/2)) (cos^2x)/(1-sin^2x) =

The value of lim_(xrarrpi)(sin(2picos^(2)x))/(tan(pisec^(2)x)) . Is equal to

lim_(x rarr(pi)/(2))(((pi)/(2)-x)sin x-2cos x)/(((pi)/(2)-x)+cot x)

lim_(xrarrpi) (sin(pi-x))/(pi(pi-x))

lim_ (x rarr pi) (sin3x) / (sin2x)

lim_ (x rarr (pi) / (2)) (sin2x) / (cos x)

lim_ (x rarr0) (cos ((pi) / (2cos x))) / (sin (sin x ^ (2)))

lim_ (x rarr pi) ((1-sin x) ^ (2)) / (((pi) / (2) -x) ^ (2))

lim_(x rarr(pi)/(2))(cot x-cos x)/(((pi)/(2)-x)^(3))=

Lim_(x rarr oo) 2^(x-1)(sin (pi/(2^(x)))+tan(pi/(2^(x)))) is equal to

FIITJEE-TIPS-OBJECTIVE
  1. The orthogonal trajectories of the circle x^(2)+y^(2)-ay=0, (where a i...

    Text Solution

    |

  2. The value of int(0)^(pi//2)(tanx log(tanx))/(sec^(2)x)dx is

    Text Solution

    |

  3. lim(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(cot((pi)/(2)sin^(2)x)) equals

    Text Solution

    |

  4. The domain of the function sqrt(cos (tan^(-1).(1)/((1-|1-|x||))) is

    Text Solution

    |

  5. If area bounded by y=logx, y = x and x^(2)+y^(2)+2xy-k^(2)=0 is sq. un...

    Text Solution

    |

  6. The value of the parameter a(a>=1) for which the area of the figure bo...

    Text Solution

    |

  7. Solution of equation ylog((e )/(x))(dx)/(dy)+xlogx=x^(2) is

    Text Solution

    |

  8. solution of the differential equation (x^2sin^3 y-y^2 cos x) dx + (x^3...

    Text Solution

    |

  9. Let P(x) be a polynomial of degree n with real coefficients and is non...

    Text Solution

    |

  10. The inequality int(0)^(1)(dx)/(1+x^(n))gt1-(1)/(n)(n in N) is true for

    Text Solution

    |

  11. Solution of the differential equation {1/x-(y^2)/((x-y)^2)}dx+{(x^2)/(...

    Text Solution

    |

  12. If the function f:RrarrR and g:R rarrR are such that f(x) is continuou...

    Text Solution

    |

  13. if (x-a)^2+(y-b)^2=c^2 then {1+((dy)/(dx))^2}/{(d^2y)/(dx^2)} =?

    Text Solution

    |

  14. If int(dx)/((x-sqrt(x^(2)-1))^(2))=Ax^(3)+Bx^(2)+Cx+D(x^(2)-1)^(3//2)+...

    Text Solution

    |

  15. int0^oo(pi/(1+pi^2x^2)-1/(1+x^2))logxdxi se q u a lto -pi/21npi (b) ...

    Text Solution

    |

  16. If f:RrarrR and g:R rarrR are two functions such that f(x)+f''(x)=-xg(...

    Text Solution

    |

  17. The absolute maximum value of the function f(x)=((x+1)^(4))/(x^(4)-x^(...

    Text Solution

    |

  18. If f: Rvec is an invertible function such that f(x)a n df^(-1)(x) are ...

    Text Solution

    |

  19. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  20. If g(x)=max(y^(2)-xy)(0le yle1), then the minimum value of g(x) (for...

    Text Solution

    |