Home
Class 12
MATHS
Let f(x)=2x^(1//3)+3x^(1//2)+1. The valu...

Let `f(x)=2x^(1//3)+3x^(1//2)+1.` The value of `lim_(hrarr0)(f(1+h)-f(1-h))/(h^(2)+2h)` is equal to

A

2

B

`(13)/(12)`

C

`(13)/(6)`

D

`(13)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{h \to 0} \frac{f(1+h) - f(1-h)}{h^2 + 2h} \) where \( f(x) = 2x^{1/3} + 3x^{1/2} + 1 \), we will follow these steps: ### Step 1: Evaluate \( f(1+h) \) and \( f(1-h) \) First, we need to compute \( f(1+h) \) and \( f(1-h) \): \[ f(1+h) = 2(1+h)^{1/3} + 3(1+h)^{1/2} + 1 \] \[ f(1-h) = 2(1-h)^{1/3} + 3(1-h)^{1/2} + 1 \] ### Step 2: Substitute into the limit expression Now, substitute these expressions into the limit: \[ f(1+h) - f(1-h) = \left(2(1+h)^{1/3} + 3(1+h)^{1/2} + 1\right) - \left(2(1-h)^{1/3} + 3(1-h)^{1/2} + 1\right) \] This simplifies to: \[ f(1+h) - f(1-h) = 2\left((1+h)^{1/3} - (1-h)^{1/3}\right) + 3\left((1+h)^{1/2} - (1-h)^{1/2}\right) \] ### Step 3: Apply the limit Now, we need to compute the limit: \[ \lim_{h \to 0} \frac{2\left((1+h)^{1/3} - (1-h)^{1/3}\right) + 3\left((1+h)^{1/2} - (1-h)^{1/2}\right)}{h^2 + 2h} \] ### Step 4: Use Taylor expansion for small \( h \) For small \( h \), we can use the Taylor expansion: \[ (1+h)^{1/3} \approx 1 + \frac{1}{3}h - \frac{1}{9}h^2 + O(h^3) \] \[ (1-h)^{1/3} \approx 1 - \frac{1}{3}h - \frac{1}{9}h^2 + O(h^3) \] Thus, \[ (1+h)^{1/3} - (1-h)^{1/3} \approx \left(1 + \frac{1}{3}h - \frac{1}{9}h^2\right) - \left(1 - \frac{1}{3}h - \frac{1}{9}h^2\right) = \frac{2}{3}h + O(h^2) \] And similarly for the square root: \[ (1+h)^{1/2} \approx 1 + \frac{1}{2}h - \frac{1}{8}h^2 + O(h^3) \] \[ (1-h)^{1/2} \approx 1 - \frac{1}{2}h - \frac{1}{8}h^2 + O(h^3) \] Thus, \[ (1+h)^{1/2} - (1-h)^{1/2} \approx \left(1 + \frac{1}{2}h - \frac{1}{8}h^2\right) - \left(1 - \frac{1}{2}h - \frac{1}{8}h^2\right) = h + O(h^2) \] ### Step 5: Substitute back into the limit Now substituting back into our limit expression: \[ f(1+h) - f(1-h) \approx 2\left(\frac{2}{3}h\right) + 3(h) = \frac{4}{3}h + 3h = \left(\frac{4}{3} + 3\right)h = \frac{13}{3}h \] ### Step 6: Simplify the limit Now we can substitute this into our limit: \[ \lim_{h \to 0} \frac{\frac{13}{3}h}{h^2 + 2h} = \lim_{h \to 0} \frac{\frac{13}{3}h}{h(h + 2)} = \lim_{h \to 0} \frac{\frac{13}{3}}{h + 2} \] As \( h \to 0 \), this limit becomes: \[ \frac{\frac{13}{3}}{2} = \frac{13}{6} \] ### Final Answer Thus, the value of the limit is: \[ \frac{13}{6} \] ---
Promotional Banner

Topper's Solved these Questions

  • TIPS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|37 Videos
  • TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I): MCQ (SINGLE CORRECT)|125 Videos
  • TEST PAPERS

    FIITJEE|Exercise MATHEMATICS|328 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

f(x)=3x^(10)7x^(8)+5x^(6)-21x^(3)+3x^(2)7, then is the value of lim_(h rarr0)(f(1-h)-f(1))/(h^(3)+3h) is

23.The value of lim_(h rarr0)((1)/(h(8+h)^((1)/(3)))-(1)/(2h)) equals

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

the value of lim_(h to 0) (f(x+h)+f(x-h))/h is equal to

If f(x)=(sin(pi x)/(4))/(x+1) , then lim_(h rarr0)(f(1+h)-f(1))/(h^(2)+2h) is

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

If f(x) is derivable at x=2 such that f(2)=2 and f'(2)=4 , then the value of lim_(h rarr0)(1)/(h^(2))(ln f(2+h^(2))-ln f(2-h^(2))) is equal to

If f '(2) =1, then lim _( h to 0 ) (f (2+ h ^(2)) -f ( 2- h ^(2)))/( 2h ^(2)) is equal to

FIITJEE-TIPS-OBJECTIVE
  1. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  2. If u=sqrt(a^2cos^2theta+b^2sin^2theta)+sqrt(a^2sin^2theta+b^2cos^2thet...

    Text Solution

    |

  3. f(x)={:{(2-,|x^(2),+,5x,+,6|",",xne-2),(a^(2),+1",",x=-2):},then the r...

    Text Solution

    |

  4. If f[1, oo)rarr[1, oo) is defined by f(x)=2^(x(x-1)) then f^(-1)(x)=

    Text Solution

    |

  5. Let f(x)={{:(x^(2)-ax+1",", x lt 0),(b(1-x)^(3)",", x ge0):}. If is a ...

    Text Solution

    |

  6. Maximum number of real solution for the equation ax^(n)+x^(2)+bx+c=0...

    Text Solution

    |

  7. int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

    Text Solution

    |

  8. Range of the function f(x)= x cos( 1/x), xgt1

    Text Solution

    |

  9. lim(xrarroo)(sqrt(x+sqrtx)-sqrtx) is

    Text Solution

    |

  10. Let f(x)=2x^(1//3)+3x^(1//2)+1. The value of lim(hrarr0)(f(1+h)-f(1-h)...

    Text Solution

    |

  11. If a function f:R rarr R determined by equation f(x)=-f(|x|) us

    Text Solution

    |

  12. Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt...

    Text Solution

    |

  13. IF a function is symmetric about the x =2 and x = 3, then the function...

    Text Solution

    |

  14. int(dx)/((1+sqrtx)^(8))=

    Text Solution

    |

  15. Let a1=1, an=n(a(n-1)+1 for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a3...

    Text Solution

    |

  16. If f(x)=sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(...

    Text Solution

    |

  17. If f(x)=([{x}]tan^(-1)((x^(2)-3x-1)/(x^(2)-3x+5))+3-x^(7))^((1)/(7)). ...

    Text Solution

    |

  18. (1)/(x)=("2 e")/("3 !")+("4 e")/("5 !")+("6 e")/("7 !")+….oo, then fin...

    Text Solution

    |

  19. If the integral int(b)^(oo)(sqrt(sqrtx+a)-sqrtx)-sqrt(sqrtx-sqrt(x-b))...

    Text Solution

    |

  20. Tangents PA and PB are drawn to the circle x^(2)+y^(2)=4 from an exter...

    Text Solution

    |