Home
Class 12
MATHS
If in a triangle ABC, b cos ^(2) "" A/2 ...

If in a triangle ABC,` b cos ^(2) "" A/2 + a cos ^(2) "" B/2 = (3c)/(2),` then

A

`c ^(2) ge ab`

B

`2c gt sqrt (ab)`

C

`(a+c)/(2c -a) + (b+c)/( 2c -b)` has minimum value 4

D

`a/c + c/b + b/a ge 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ b \cos^2 \left( \frac{A}{2} \right) + a \cos^2 \left( \frac{B}{2} \right) = \frac{3c}{2} \] ### Step 1: Use the identity for \(\cos^2\) of half angles We know that: \[ \cos^2 \left( \frac{A}{2} \right) = \frac{1 + \cos A}{2} \] \[ \cos^2 \left( \frac{B}{2} \right) = \frac{1 + \cos B}{2} \] ### Step 2: Substitute the identities into the equation Substituting these identities into the equation gives: \[ b \left( \frac{1 + \cos A}{2} \right) + a \left( \frac{1 + \cos B}{2} \right) = \frac{3c}{2} \] ### Step 3: Simplify the equation Multiply through by 2 to eliminate the fractions: \[ b(1 + \cos A) + a(1 + \cos B) = 3c \] This simplifies to: \[ b + a + b \cos A + a \cos B = 3c \] ### Step 4: Rearranging the terms Rearranging the equation gives: \[ b \cos A + a \cos B = 3c - (a + b) \] ### Step 5: Use the cosine rule Using the cosine rule in triangle \(ABC\): \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] \[ \cos B = \frac{a^2 + c^2 - b^2}{2ac} \] ### Step 6: Substitute \(\cos A\) and \(\cos B\) into the equation Substituting these values into the equation: \[ b \left( \frac{b^2 + c^2 - a^2}{2bc} \right) + a \left( \frac{a^2 + c^2 - b^2}{2ac} \right) = 3c - (a + b) \] ### Step 7: Simplify further This results in: \[ \frac{b(b^2 + c^2 - a^2)}{2c} + \frac{a(a^2 + c^2 - b^2)}{2c} = 3c - (a + b) \] ### Step 8: Combine the fractions Combining the fractions on the left side: \[ \frac{b(b^2 + c^2 - a^2) + a(a^2 + c^2 - b^2)}{2c} = 3c - (a + b) \] ### Step 9: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ b(b^2 + c^2 - a^2) + a(a^2 + c^2 - b^2) = 2c(3c - (a + b)) \] ### Step 10: Rearranging and solving for relationships This equation can be rearranged to find relationships between \(a\), \(b\), and \(c\). ### Conclusion After analyzing the relationships and conditions, we can conclude that the sides \(a\), \(b\), and \(c\) are in Arithmetic Progression (AP).
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE)|34 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL BASED QUESTIONS|23 Videos
  • MATHEMATICS

    FIITJEE|Exercise ASSERTION REASONING|8 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

If in a triangle ABC,b cos^(2)((A)/(2))+a cos^(2)((B)/(2))=(3)/(2)c then a,c,b are:

In a triangle ABC,bc cos^(2)(A)/(2)+ca cos^(2)(B)/(2)+ab cos^(2)(C)/(2)=

If a triangle ABC, sin A = sin^(2) B and 2 cos^(2)A = 3 cos^(2)B , then the Delta ABC is :

In a triangle ABC,cos^(2)A+cos^(2)B+cos^(2)C=

If in a triangle ABC, 2 (cos A)/(a) +(cos B)/(b)+2(cos C)/c=(a)/(bc)+b/(ca) then the value of the angle A is

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceless

Prove that in triangle ABC , cos^(2)A + cos^(2)B + cos^(2)C lt 3/4 .

FIITJEE-MATHEMATICS -MCQ (MULTIPLE CORRECT)
  1. A circle of radius r,r ne 0 touches the parabola y ^(2) + 12 x =0 at t...

    Text Solution

    |

  2. The equation of AB,BC, AC three sides of a triangle are -x + y -1 =0, ...

    Text Solution

    |

  3. If (a, 0) is a point on a diameter of the circle x^(2)+y6(2)=4, then t...

    Text Solution

    |

  4. The equation(s) of the tangent at the point (0,0) to the circle, makin...

    Text Solution

    |

  5. A tangent is drawn at any point (l,m) l, m ne 0 on the parabola y ^(2)...

    Text Solution

    |

  6. a square is inscribed in the circle x^2 + y^2- 10x - 6y + 30 = 0. One ...

    Text Solution

    |

  7. If sqrt(1- sin A)= sin "" A/2 - cos "" A/2 could lie in quadrant

    Text Solution

    |

  8. If sinx+cosx=sqrt(y+1/y) for x in [0,pi] , then x=pi/4 (b) y=0 y=1 ...

    Text Solution

    |

  9. If sin(picostheta)=cos(pis intheta),t h e ns in2theta= +-3/4 (b) +-4...

    Text Solution

    |

  10. AB and CD are two equal and parallel chords of the ellipse (x ^(2))/(a...

    Text Solution

    |

  11. In a triangle with sides, a,b, and c a semicircle toughing the sides A...

    Text Solution

    |

  12. In Delta ABC, sec A, sec B, sec C are in harmonic progression, then

    Text Solution

    |

  13. If in a triangle ABC, b cos ^(2) "" A/2 + a cos ^(2) "" B/2 = (3c)/(2)...

    Text Solution

    |

  14. If the roots of the equation c^(2)x^(2)- c(a+b)x + ab =0 are sin A, s...

    Text Solution

    |

  15. If in a triangle ABC, CD is the angular bisector of the angle ACB then...

    Text Solution

    |

  16. The equation (b-c)x+(c-a)y+(a-b)=0 and (b^3-c^3)x+(c^3-a^3)y+a^3-b^3=0...

    Text Solution

    |

  17. If the conics whose equations are S1:(sin^2theta)x^2+(2htantheta)x y+(...

    Text Solution

    |

  18. If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y), where xy< 0, then the ...

    Text Solution

    |

  19. If a,b,c are the sides of triangle then (a)/(c +a -b) + (b)/(a +b -c) ...

    Text Solution

    |

  20. If (5,12)a n d(24 ,7) are the foci of a hyperbola passing through the ...

    Text Solution

    |