Home
Class 12
MATHS
Any second degree equation ax ^(2) + by ...

Any second degree equation `ax ^(2) + by ^(2) + 2 hxy + 2gx + 2fy + c =0` will represent oertain curves under different conditions:
It will represent a pair of stragith lines if `Delta =0` where `Delta = 2fgh + abc -af ^(2) - bg ^(2)-ch^(2).` Similar to this rule, it will represent real circel if `Delta ne 0, a =b and h =0.`
It will represent parabola, ellipse and hyperbola if `(Delta ne 0)h^(2)=ab, h^(2) -ab lt 0 and h^(2) -ab gt 0` respectively for each of the given curves.
If `3x ^(2) -11 xy + 10 y ^(2) - 7x + 13 y + k =0` represent pair of straight lines then vlaue of k is

A

3

B

4

C

6

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the equation \( 3x^2 - 11xy + 10y^2 - 7x + 13y + k = 0 \) represents a pair of straight lines, we will use the condition that \( \Delta = 0 \), where \[ \Delta = 2fgh + abc - af^2 - bg^2 - ch^2. \] ### Step 1: Identify the coefficients From the equation \( 3x^2 - 11xy + 10y^2 - 7x + 13y + k = 0 \), we can identify the coefficients: - \( a = 3 \) (coefficient of \( x^2 \)) - \( b = 10 \) (coefficient of \( y^2 \)) - \( h = -\frac{11}{2} \) (since \( 2h = -11 \)) - \( g = -\frac{7}{2} \) (since \( 2g = -7 \)) - \( f = \frac{13}{2} \) (since \( 2f = 13 \)) - \( c = k \) (constant term) ### Step 2: Substitute the coefficients into the formula for \( \Delta \) Now, we will substitute these values into the formula for \( \Delta \): \[ \Delta = 2 \left(\frac{13}{2}\right) \left(-\frac{7}{2}\right) \left(-\frac{11}{2}\right) + 3 \cdot 10 \cdot k - 3 \left(\frac{13}{2}\right)^2 - 10 \left(-\frac{7}{2}\right)^2 - k \left(-\frac{11}{2}\right)^2. \] ### Step 3: Calculate each term 1. **Calculate \( 2fgh \)**: \[ 2 \cdot \frac{13}{2} \cdot -\frac{7}{2} \cdot -\frac{11}{2} = \frac{13 \cdot 7 \cdot 11}{4} = \frac{1001}{4}. \] 2. **Calculate \( abc \)**: \[ 3 \cdot 10 \cdot k = 30k. \] 3. **Calculate \( af^2 \)**: \[ 3 \cdot \left(\frac{13}{2}\right)^2 = 3 \cdot \frac{169}{4} = \frac{507}{4}. \] 4. **Calculate \( bg^2 \)**: \[ 10 \cdot \left(-\frac{7}{2}\right)^2 = 10 \cdot \frac{49}{4} = \frac{490}{4}. \] 5. **Calculate \( ch^2 \)**: \[ k \cdot \left(-\frac{11}{2}\right)^2 = k \cdot \frac{121}{4}. \] ### Step 4: Substitute back into \( \Delta \) Now, substituting these values back into the equation for \( \Delta \): \[ \Delta = \frac{1001}{4} + 30k - \frac{507}{4} - \frac{490}{4} - \frac{121k}{4}. \] ### Step 5: Combine like terms Combine the constant terms and the terms involving \( k \): \[ \Delta = \frac{1001 - 507 - 490}{4} + \left(30 - \frac{121}{4}\right)k = \frac{4}{4} + \left(30 - \frac{121}{4}\right)k = 1 + \left(30 - 30.25\right)k = 1 - \frac{1}{4}k. \] ### Step 6: Set \( \Delta = 0 \) Setting \( \Delta = 0 \): \[ 1 - \frac{1}{4}k = 0. \] ### Step 7: Solve for \( k \) Solving for \( k \): \[ \frac{1}{4}k = 1 \implies k = 4. \] Thus, the value of \( k \) is \( \boxed{4} \).
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL BASED QUESTIONS|23 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATHEMATICS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

For the equation ax^(2) +by^(2) + 2hxy + 2gx + 2fy + c =0 where a ne 0 , to represent a circle, the condition will be

If the equation hxy + gx + fy + c = 0 represents a pair of straight lines, then

IF the equation x^(2) + y^(2) + 2gx + 2fy + 1 = 0 represents a pair of lines, then

The equation x^(2) + y^(2) + 2gx + 2fy + c = 0 represents a circle of non-zero radius , if

If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents parallel straight lines, then

If g^(2)+f^(2)=c , then the equation x^(2)+y^(2)+2gx+2fy+c=0 will represent

If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents two parallel straight lines, then

FIITJEE-MATHEMATICS -PARAGRAPH BASED (MULTIPLE CHOICE)
  1. A circle C whose radius is 1 unit, thuches the x-axis at point A. The ...

    Text Solution

    |

  2. Pedal Triangle of a Triangle: Let Delta ABC be any triangle and let D,...

    Text Solution

    |

  3. Consider a three dimensional Cartesian system with origin at O and thr...

    Text Solution

    |

  4. Consider a three dimensional Cartesian system with origin at O and thr...

    Text Solution

    |

  5. Consider a three dimensional Cartesian system with origin at O and thr...

    Text Solution

    |

  6. For each positve real number k, let C (k) denotes the circle with cent...

    Text Solution

    |

  7. For each positve real number k, let C (k) denotes the circle with cent...

    Text Solution

    |

  8. For each positve real number k, let C (k) denotes the circle with cent...

    Text Solution

    |

  9. Consider a fixed parabola C (1) -=x ^(2) + y =0. A set of varying para...

    Text Solution

    |

  10. Consider a fixed parabola C (1) -=x ^(2) + y =0. A set of varying para...

    Text Solution

    |

  11. Any second degree equation ax ^(2) + by ^(2) + 2 hxy + 2gx + 2fy + c =...

    Text Solution

    |

  12. If the equation 12x^(2)+7xy-py^(2)-18x+qy+6=0 represents a pair of pe...

    Text Solution

    |

  13. Suppose we drfine the distance between two points P (x(1), y (1)) and ...

    Text Solution

    |

  14. Suppose we drfine the distance between two points P (x(1), y (1)) and ...

    Text Solution

    |

  15. x ^(2) +y ^(2) =a ^(2) is the standard equation of a circle centred at...

    Text Solution

    |

  16. x ^(2) +y ^(2) =a ^(2) is the standard equation of a circle centred at...

    Text Solution

    |

  17. Solving problems in co-ordinate geometry with given set of conditions ...

    Text Solution

    |

  18. Solving problems in co-ordinate geometry with given set of conditions ...

    Text Solution

    |

  19. An equatin of the family of circles passing through a given pair of po...

    Text Solution

    |

  20. An equatin of the family of circles passing through a given pair of po...

    Text Solution

    |