Home
Class 12
MATHS
If sum (r =1) ^(n) (cos (2rx))/(sin (r x...

If `sum _(r =1) ^(n) (cos (2rx))/(sin (r x + (pi)/(4)))= (2 sin (50x)sin ((pi)/(4)- (101)/(2)))/(sin ((x)/(2)))` then value of n is `"_________"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sum_{r=1}^{n} \frac{\cos(2rx)}{\sin\left(rx + \frac{\pi}{4}\right)} = \frac{2 \sin(50x) \sin\left(\frac{\pi}{4} - \frac{101}{2}\right)}{\sin\left(\frac{x}{2}\right)}, \] we will follow these steps: ### Step 1: Rewrite the left-hand side We start with the left-hand side: \[ \sum_{r=1}^{n} \frac{\cos(2rx)}{\sin\left(rx + \frac{\pi}{4}\right)}. \] To simplify this, we can multiply the numerator and denominator by \(2 \cos\left(rx + \frac{\pi}{4}\right)\): \[ \sum_{r=1}^{n} \frac{2 \cos(2rx) \cos\left(rx + \frac{\pi}{4}\right)}{2 \cos\left(rx + \frac{\pi}{4}\right) \sin\left(rx + \frac{\pi}{4}\right)}. \] Using the identity \(2 \sin A \cos A = \sin(2A)\), we can rewrite the numerator: \[ \sum_{r=1}^{n} \frac{\sin(2rx)}{\sin\left(rx + \frac{\pi}{4}\right)}. \] ### Step 2: Use the sine addition formula Using the sine addition formula, we can express \(\sin\left(rx + \frac{\pi}{4}\right)\): \[ \sin\left(rx + \frac{\pi}{4}\right) = \sin(rx)\cos\left(\frac{\pi}{4}\right) + \cos(rx)\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}(\sin(rx) + \cos(rx)). \] ### Step 3: Simplify the sum Now, we can express the sum in terms of sine and cosine: \[ \sum_{r=1}^{n} \frac{\sin(2rx)}{\frac{\sqrt{2}}{2}(\sin(rx) + \cos(rx))} = \frac{2}{\sqrt{2}} \sum_{r=1}^{n} \frac{\sin(2rx)}{\sin(rx) + \cos(rx)}. \] ### Step 4: Compare with the right-hand side Now we can compare this with the right-hand side: \[ \frac{2 \sin(50x) \sin\left(\frac{\pi}{4} - \frac{101}{2}\right)}{\sin\left(\frac{x}{2}\right)}. \] ### Step 5: Equate coefficients From the comparison, we can see that: \[ \frac{n}{2} = 50 \implies n = 100. \] Thus, the value of \(n\) is \[ \boxed{100}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL BASED QUESTIONS|23 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^n (cos(2r x))/sin(r x+pi/4)=((2sin50 x)/sin(x/2))sin(pi/4-(m x)/2) then

sin m((pi)/(2)+x)+cos n((pi)/(2)-x)

Knowledge Check

  • If x_(r) = cos ((pi)/(2^(r))) + i sin ((pi)/( 2^(r))) " then " x_(1), x_(2). . . . infty is

    A
    1
    B
    `-1`
    C
    3
    D
    2
  • If I=int_(-pi//2)^(pi//2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx, then the value of I is

    A
    0
    B
    `pi`
    C
    `(pi)/(2)`
    D
    `(pi)/(4)`.
  • Similar Questions

    Explore conceptually related problems

    prove that sin((pi)/(4)+x)+sin((pi)/(4)-x)=sqrt(2)cos x

    sum_(r=0)^(n)nC_(r)sin rx*cos(n-r)x s equal to

    (sin x+cos x)^(2)+cos^(2)((pi)/(4)+x)in

    lim_ (n rarr oo) sum_ (r = 2) ^ (n) ((r + 1) (sin pi) / (r + 1) -r (sin pi) / (r))

    cos ^ (2) (pi / 4 + x) -sin ^ (2) (pi / 4-x)

    sin(pi/4+A).sin(pi/4-A)=1/2 cos2A