Home
Class 12
MATHS
In Delta ABC, a ^(2) + c^(2)= 2002 b ^(2...

In `Delta ABC, a ^(2) + c^(2)= 2002 b ^(2)` then `(cotB)/(cot A + cotC) ` is equal to `"________"`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\cot B}{\cot A + \cot C}\) given that \(a^2 + c^2 = 2002b^2\) in triangle \(ABC\). ### Step-by-Step Solution: 1. **Understanding the Cotangent Formula**: The cotangent of an angle in a triangle can be expressed in terms of the sides of the triangle. Specifically: \[ \cot B = \frac{a^2 + c^2 - b^2}{4 \Delta} \] \[ \cot A = \frac{b^2 + c^2 - a^2}{4 \Delta} \] \[ \cot C = \frac{a^2 + b^2 - c^2}{4 \Delta} \] where \(\Delta\) is the area of triangle \(ABC\). 2. **Substituting the Given Condition**: We know from the problem statement that: \[ a^2 + c^2 = 2002b^2 \] We can substitute this into the cotangent formulas. 3. **Finding \(\cot B\)**: Substitute \(a^2 + c^2\) into the formula for \(\cot B\): \[ \cot B = \frac{2002b^2 - b^2}{4 \Delta} = \frac{2001b^2}{4 \Delta} \] 4. **Finding \(\cot A + \cot C\)**: Now, we need to calculate \(\cot A + \cot C\): \[ \cot A = \frac{b^2 + c^2 - a^2}{4 \Delta} \] \[ \cot C = \frac{a^2 + b^2 - c^2}{4 \Delta} \] Adding these two: \[ \cot A + \cot C = \frac{(b^2 + c^2 - a^2) + (a^2 + b^2 - c^2)}{4 \Delta} = \frac{2b^2}{4 \Delta} = \frac{b^2}{2 \Delta} \] 5. **Calculating \(\frac{\cot B}{\cot A + \cot C}\)**: Now we can substitute \(\cot B\) and \(\cot A + \cot C\) into the expression: \[ \frac{\cot B}{\cot A + \cot C} = \frac{\frac{2001b^2}{4 \Delta}}{\frac{b^2}{2 \Delta}} = \frac{2001b^2}{4 \Delta} \cdot \frac{2 \Delta}{b^2} \] Simplifying this gives: \[ = \frac{2001 \cdot 2}{4} = \frac{4002}{4} = 1000.5 \] ### Final Answer: Thus, the value of \(\frac{\cot B}{\cot A + \cot C}\) is \(1000.5\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL BASED QUESTIONS|23 Videos
  • MATHEMATICAL REASONING

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-2|18 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC,a^(2)+c^(2)=2002b^(2) then (cot A+cot C)/(cot B) is equal to

In a /_ABC, if b^(2)+c^(2)=3a^(2), then cot B+cot C-cot A is equal to

Knowledge Check

  • If, in a Delta ABC, b^(2) + c^(2) = 3a^(2) , then : cot B + cot C - cot A =

    A
    1
    B
    `(ab)/(4Delta)`
    C
    0
    D
    `(ac)/(4Delta)`
  • If A+B+C =180^@ ,then cotA+cotB+cot C)/(cot A cot B cot C) is equal to

    A
    1
    B
    cot A cot B cot C
    C
    -1
    D
    0
  • If A+B+C=180^@ , then (cot A +cotB +cotC)/(cot A cotBcotC) is equal to

    A
    1
    B
    `cot A cos B cot C`
    C
    `-1`
    D
    0
  • Similar Questions

    Explore conceptually related problems

    In any Delta ABC, prove that Delta=(b^(2)+c^(2)-a^(2))/(4cot A)

    In a Delta ABC if 9(a^(2)+b^(2))=17c^(2) then the value of the (cot A+cot B)/(cot C) is

    In a triangle ABC if a^(2)+b^(2)=101c^(2) then find the value of (cot C)/(cot A+cot B)

    If, in Delta ABC, 3a = b + c then: cot (B/2) cdot cot (C/2) = .....

    If a^(2),b^(2) and c^(2) are in AP, then cotA, cotB and cotC are in