Home
Class 11
MATHS
Find the values of the following : (i) ...

Find the values of the following : (i) `i^(7)+i^(17)+i^(12)` (ii) `i^(11)+i^(-11)` (iii) `i^(3)+(1)/(i^(3))` (iv) `1+i^(2)+i^(6)+i^(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems involving powers of the imaginary unit \( i \), we first need to recall the fundamental properties of \( i \): - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) These powers repeat every four terms, so we can reduce any exponent modulo 4. Now, let's solve each part step by step. ### (i) \( i^{7} + i^{17} + i^{12} \) 1. **Calculate \( i^{7} \)**: \[ 7 \mod 4 = 3 \quad \Rightarrow \quad i^{7} = i^{3} = -i \] 2. **Calculate \( i^{17} \)**: \[ 17 \mod 4 = 1 \quad \Rightarrow \quad i^{17} = i^{1} = i \] 3. **Calculate \( i^{12} \)**: \[ 12 \mod 4 = 0 \quad \Rightarrow \quad i^{12} = i^{0} = 1 \] 4. **Combine the results**: \[ i^{7} + i^{17} + i^{12} = -i + i + 1 = 1 \] ### (ii) \( i^{11} + i^{-11} \) 1. **Calculate \( i^{11} \)**: \[ 11 \mod 4 = 3 \quad \Rightarrow \quad i^{11} = i^{3} = -i \] 2. **Calculate \( i^{-11} \)**: \[ -11 \mod 4 = 1 \quad \Rightarrow \quad i^{-11} = i^{1} = i \] 3. **Combine the results**: \[ i^{11} + i^{-11} = -i + i = 0 \] ### (iii) \( i^{3} + \frac{1}{i^{3}} \) 1. **Calculate \( i^{3} \)**: \[ i^{3} = -i \] 2. **Calculate \( \frac{1}{i^{3}} \)**: \[ \frac{1}{i^{3}} = \frac{1}{-i} = \frac{-i}{-i \cdot i} = \frac{-i}{1} = -i \] 3. **Combine the results**: \[ i^{3} + \frac{1}{i^{3}} = -i - i = -2i \] ### (iv) \( 1 + i^{2} + i^{6} + i^{8} \) 1. **Calculate \( i^{2} \)**: \[ i^{2} = -1 \] 2. **Calculate \( i^{6} \)**: \[ 6 \mod 4 = 2 \quad \Rightarrow \quad i^{6} = i^{2} = -1 \] 3. **Calculate \( i^{8} \)**: \[ 8 \mod 4 = 0 \quad \Rightarrow \quad i^{8} = i^{0} = 1 \] 4. **Combine the results**: \[ 1 + i^{2} + i^{6} + i^{8} = 1 - 1 - 1 + 1 = 0 \] ### Final Answers: (i) \( 1 \) (ii) \( 0 \) (iii) \( -2i \) (iv) \( 0 \)

To solve the given problems involving powers of the imaginary unit \( i \), we first need to recall the fundamental properties of \( i \): - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) These powers repeat every four terms, so we can reduce any exponent modulo 4. ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5B|28 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Find the values of the following : (i) i^(73) (ii) i^(-6) (iii) (1)/(i)

Evaluate the following : (i) i^(7) (ii) i^(51) (iii) (1)/(i) (iv) i^(-71) (v) (i^(37)+(1)/(i^(67)))

Evaluate the following (i) i^(9) (ii) i^(342) (iii) i^(998) (iv) i^(-63) (v) (i^(3)+(1)/(i^(3)))

Find the modulus of the following: (1)4+i(ii)-2-3i(iii)(1)/(3-2i)

Simplify the following : (i) [i^(19) +(1)/(i^(25))]^(2) (ii) [i^(5)- (1)/(i^(3))]^(4)

Simplify the following : (i) i^(97) (ii) i^(8) (iii) (1)/(i^(3)) (iv) (-i)^(14) (v) i^(-22) (vi) i^(-63)

Find the values of following expressions: i^(49)+i^(68)+i^(89)+i^(110) (ii) i^(30)+i^(80)+i^(120) (iii) i^+i^2+i^3+i^4 (iv) i^5+i^(10)+i^(15) (v) (i^(592)+i^(590)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(576)+i^(574)) (vi) 1+i^2+i^4+i^6+i^8+doti^(20) (vii) (1+i)^6+(1-i)^3

Write the following in the form x+iy: (i) i+i^(2)+i^(3)+i^(4) (ii) i^(4)+i^(8)+i^(12)+i^(16) (iii) i+i^(5)+i^(9)+i^(13) (iv) i^(9)+i^(10)+i^(11)+i^(12) .

Write the following in the form x+iy: (i) (2i)^(3) (ii) i^(-35) (iii) (-i)(2i)(-(1)/(8)i)^(3) .

Find the value of i^4 + i^5 + i^6 + i^7