Home
Class 11
MATHS
Show that : i^(101)+i^(102)+i^(103)+i^(1...

Show that : `i^(101)+i^(102)+i^(103)+i^(104)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( i^{101} + i^{102} + i^{103} + i^{104} = 0 \), we can follow these steps: ### Step 1: Identify the powers of \( i \) The powers of \( i \) cycle every 4 terms: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) - \( i^5 = i \) (and the cycle repeats) ### Step 2: Calculate each term Now, we will calculate \( i^{101} \), \( i^{102} \), \( i^{103} \), and \( i^{104} \) using the cyclic property. - To find \( i^{101} \): \[ 101 \mod 4 = 1 \quad \Rightarrow \quad i^{101} = i \] - To find \( i^{102} \): \[ 102 \mod 4 = 2 \quad \Rightarrow \quad i^{102} = -1 \] - To find \( i^{103} \): \[ 103 \mod 4 = 3 \quad \Rightarrow \quad i^{103} = -i \] - To find \( i^{104} \): \[ 104 \mod 4 = 0 \quad \Rightarrow \quad i^{104} = 1 \] ### Step 3: Substitute back into the equation Now substitute these values back into the original expression: \[ i^{101} + i^{102} + i^{103} + i^{104} = i + (-1) + (-i) + 1 \] ### Step 4: Simplify the expression Now, we can simplify: \[ i - i - 1 + 1 = 0 \] ### Conclusion Thus, we have shown that: \[ i^{101} + i^{102} + i^{103} + i^{104} = 0 \] This proves the statement. ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5B|28 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

i^(53) + i^(72) + i^(93) + i^(102) = 2i .

Show that i^(15)+i^(17)+i^(19)+i^(21)+i^(24) is a real number.

Prove that: (i) 1+i^(10)+i^(100)-i^(1000)=0 (ii) i^(107)+i^(112)+i^(117)+i^(122)=0 (iii) (1+i^(14)+i^(18)+i^(22)) is real number.

1 + i^(2) + i^(4) + i^(6) = 0 .

Show that 6i^(50)+5i^(17)-i^(11)+6i^(28) is an imaginary number.

Show that 1+i^(10)+i^(20)+i^(30) is a real number.

Show that: {i^(19)+((1)/(i))^(25)}^(2)=-4( ii) {i^(17)-((1)/(i))^(34)}^(2)=2i (iii) {i^(18)+((1)/(i))^(24)}^(3)=0 (iv) i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n in N.

The value of i^(0)+i^(1)+i^(2)+i^(3)+i^(4) is

The value of i^101 + i^102 + i^103 + .....+i^108 is :

Evaluate (i^(57)+i^(70)+i^(91)+i^(101)+i^(104)) .