Home
Class 11
MATHS
Show that 6i^(50)+5i^(17)-i^(11)+6i^(28)...

Show that `6i^(50)+5i^(17)-i^(11)+6i^(28)` is an imaginary number.

Text Solution

Verified by Experts

The correct Answer is:
N/a
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5B|28 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Show that i^(15)+i^(17)+i^(19)+i^(21)+i^(24) is a real number.

6i^(50) + 5i^(33) - 2i^(15) + 6i^(48) = 7i .

Let z!=i be any complex number such that (z-i)/(z+i) is a purely imaginary number.Then z+(1)/(z) is

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

(1+i)^(6)+(1-i)^(6)=?

If z is a unimodular number (!=+-i) then (z+i)/(z-i) is (A) purely real (B) purely imaginary (C) an imaginary number which is not purely imaginary (D) both purely real and purely imaginary

Prove that: (i) 1+i^(2)+i^(4)+i^(6)=0 (ii) 1+i^(10)+i^(100)+i^(1000)=2 (iii) i^(104)+i^(109)+i^(114)+i^(119)=0 (iv) 6i^(54)+5i^(37)-2i^(11)+6i^(68)=7i (v) (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))=-1

Which term of the A.P. (16-6i,)(15-4i), (14-2 i), ... is a : (a) pure real number ? (b) pure imaginary number ?