Home
Class 11
MATHS
Show that i^(15)+i^(17)+i^(19)+i^(21)+i...

Show that `i^(15)+i^(17)+i^(19)+i^(21)+i^(24)` is a real number.

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( i^{15} + i^{17} + i^{19} + i^{21} + i^{24} \) is a real number, we will simplify each term using the properties of the imaginary unit \( i \), where \( i = \sqrt{-1} \) and \( i^2 = -1 \). ### Step-by-step Solution: 1. **Identify the powers of \( i \)**: The powers of \( i \) cycle every 4 terms: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) - \( i^5 = i \) (and the cycle repeats) 2. **Calculate each term**: - \( i^{15} = i^{4 \cdot 3 + 3} = (i^4)^3 \cdot i^3 = 1^3 \cdot (-i) = -i \) - \( i^{17} = i^{4 \cdot 4 + 1} = (i^4)^4 \cdot i^1 = 1^4 \cdot i = i \) - \( i^{19} = i^{4 \cdot 4 + 3} = (i^4)^4 \cdot i^3 = 1^4 \cdot (-i) = -i \) - \( i^{21} = i^{4 \cdot 5 + 1} = (i^4)^5 \cdot i^1 = 1^5 \cdot i = i \) - \( i^{24} = i^{4 \cdot 6} = (i^4)^6 = 1^6 = 1 \) 3. **Combine the results**: Now, substituting back into the expression: \[ i^{15} + i^{17} + i^{19} + i^{21} + i^{24} = -i + i - i + i + 1 \] 4. **Simplify the expression**: Combine like terms: \[ (-i + i - i + i) + 1 = 0 + 1 = 1 \] 5. **Conclusion**: The final result is \( 1 \), which is a real number. ### Final Answer: Thus, \( i^{15} + i^{17} + i^{19} + i^{21} + i^{24} = 1 \), and it is confirmed to be a real number.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5B|28 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

i^(9)+i^(19)

i^(9)+i^(19)

i^(12)+i^(13)+i^(14)+i^(15)

Show that 6i^(50)+5i^(17)-i^(11)+6i^(28) is an imaginary number.

Show that : i^(101)+i^(102)+i^(103)+i^(104)=0

Show that 1+i^(10)+i^(20)+i^(30) is a real number.

Find i^(9)+i^(19)

Prove that: (i) 1+i^(10)+i^(100)-i^(1000)=0 (ii) i^(107)+i^(112)+i^(117)+i^(122)=0 (iii) (1+i^(14)+i^(18)+i^(22)) is real number.

{i^(17)-((1)/(i))^(34)}^(2)

(Show that (-1+sqrt(3)i)^(3) is a real number