Home
Class 11
MATHS
Find the modulus and argument of the fol...

Find the modulus and argument of the following :
(i) `-sqrt (3)+i`
(ii) `-1-isqrt(3)`
(iii) `5+12i`
(iv) `3(cos300^(@)-isin30^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and argument of the given complex numbers, we will follow these steps: ### (i) For the complex number \( z = -\sqrt{3} + i \) 1. **Modulus Calculation**: \[ |z| = \sqrt{(-\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \] 2. **Argument Calculation**: \[ \text{Argument} = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right) \] Since \( x < 0 \) and \( y > 0 \), the complex number is in the second quadrant. The reference angle is \( \frac{\pi}{6} \), so: \[ \text{Argument} = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \quad \text{or} \quad 150^\circ \] ### (ii) For the complex number \( z = -1 - i\sqrt{3} \) 1. **Modulus Calculation**: \[ |z| = \sqrt{(-1)^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] 2. **Argument Calculation**: \[ \text{Argument} = \tan^{-1}\left(\frac{-\sqrt{3}}{-1}\right) = \tan^{-1}(\sqrt{3}) \] Since \( x < 0 \) and \( y < 0 \), the complex number is in the third quadrant. The reference angle is \( \frac{\pi}{3} \), so: \[ \text{Argument} = \pi + \frac{\pi}{3} = \frac{4\pi}{3} \quad \text{or} \quad 240^\circ \] ### (iii) For the complex number \( z = 5 + 12i \) 1. **Modulus Calculation**: \[ |z| = \sqrt{(5)^2 + (12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] 2. **Argument Calculation**: \[ \text{Argument} = \tan^{-1}\left(\frac{12}{5}\right) \] This angle is in the first quadrant, so we can directly use: \[ \text{Argument} = \tan^{-1}\left(\frac{12}{5}\right) \quad \text{(in radians or degrees)} \] ### (iv) For the complex number \( z = 3(\cos 300^\circ - i \sin 30^\circ) \) 1. **Convert to rectangular form**: \[ z = 3\left(\cos 300^\circ - i \sin 30^\circ\right) = 3\left(\frac{1}{2} - i \cdot \frac{1}{2}\right) = \frac{3}{2} - \frac{3}{2}i \] 2. **Modulus Calculation**: \[ |z| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(-\frac{3}{2}\right)^2} = \sqrt{\frac{9}{4} + \frac{9}{4}} = \sqrt{\frac{18}{4}} = \frac{3\sqrt{2}}{2} \] 3. **Argument Calculation**: \[ \text{Argument} = \tan^{-1}\left(\frac{-\frac{3}{2}}{\frac{3}{2}}\right) = \tan^{-1}(-1) \] Since \( x > 0 \) and \( y < 0 \), the complex number is in the fourth quadrant: \[ \text{Argument} = -\frac{\pi}{4} \quad \text{or} \quad 315^\circ \] ### Summary of Results: 1. \( |z| = 2 \), Argument = \( \frac{5\pi}{6} \) (or \( 150^\circ \)) 2. \( |z| = 2 \), Argument = \( \frac{4\pi}{3} \) (or \( 240^\circ \)) 3. \( |z| = 13 \), Argument = \( \tan^{-1}\left(\frac{12}{5}\right) \) 4. \( |z| = \frac{3\sqrt{2}}{2} \), Argument = \( -\frac{\pi}{4} \) (or \( 315^\circ \))

To find the modulus and argument of the given complex numbers, we will follow these steps: ### (i) For the complex number \( z = -\sqrt{3} + i \) 1. **Modulus Calculation**: \[ |z| = \sqrt{(-\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5E|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5B|28 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Find the argument of the following: (1+i)/(-sqrt(3)i)

Find the modulus and argument of the following complex number: z=-sqrt(3)+i

Find the modulus and argument of following complex number: (i)1+i sqrt(3)

Find the modulus and argument of the complex number -2+2sqrt3i

Find the modulus and argument of the following complex number: (1+i)/(1-i)

Find the modulus and argument of each of the following complex number: -sqrt(3)-i

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

Find the modulus and argument of the complex number (1+2i)/(1-3i)

Find the modulus of the following :(1-i sqrt(3))/(2+2i)

Find the modulus and argument of each of the following complex number: 1+i sqrt(3)