Home
Class 11
MATHS
If z=x+ iy such that the argument of (...

If `z=x+ iy` such that the argument of `(z-1)/(z+1)` is always `pi/4`. Prove that `x^2 + y^2-2y=1`

Text Solution

Verified by Experts

The correct Answer is:
N/a
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5D|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5E|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise EXERCISE 5B|28 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Example|68 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

if argument of (z-1)/(z+1)=(pi)/(4) then prove that x^(2)+y^(2)-2y=1

A variable complex number z=x+iy is such that arg (z-1)/(z+1)= pi/2 . Show that x^2+y^2-1=0 .

If z=x+iy such that |z+1|=|z-1| and arg((z-1)/(z+1))=(pi)/(4) then

If complex number z=x +iy satisfies the equation Re (z+1) = |z-1| , then prove that z lies on y^(2) = 4x .

If z=x+iy then prove that the solution of equation iz+2i+1=0 is x=-2,y=1

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi" , prove that " x^(2) + y^(2)+ z^(2) + 2xyz = 1 .

If z = x + iy and |z+6| = |2z+3| , prove that x^2+y^2 =9.

If z_1=x_1+iy,z_2=x_2+iy_2 and z_1 = (i(z_2+1))/(z_2-1) , prove that x_1^2+y_1^2-x_1= (x_2^2+y_2^2+2x_2-2y_2+1)/((x_2-1)^2+y_2^2)