Home
Class 12
MATHS
2[((2)/(3))+(1)/(3)((2)/(3))^(3)+(1)/(5)...

`2[((2)/(3))+(1)/(3)((2)/(3))^(3)+(1)/(5)((2)/(3))^(5)+...]=`

A

`log_(e)3`

B

`log_(e)4`

C

`log_(e)2`

D

`log_(e)5`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|93 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

2[((1)/(3))+(1)/(3)((1)/(3))^(3)+(1)/(5)((1)/(3))^(5)+...] =

I:2[((1)/(3))+(1)/(3)((1)/(3))^(3)+(1)/(5)((1)/(3))^(5)+...]=log_(e)2 II:2[((1)/(2))+(1)/(3)((1)/(2))^(3)+(1)/(5)((1)/(2))^(5)+...]=log_(e)2

2[((1)/(2))+(1)/(3)((1)/(2))^(3)+(1)/(5)((1)/(2))^(5)+...]=

If log_(e )k=2[(3)/(5)+(1)/(3)((3)/(5))^(3)+(1)/(5)((3)/(5))^(5)+….oo] then k =

If (3)/(4)+(1)/(3)((3)/(4))^(3)+(1)/(5)((3)/(4))^(5)+....=log_(e)a,(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+(1)/(7.3^(7))+....=log_(e)b, 1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=log_(e)c then the ascending order of a, b, c is

e^(2((1)/(3)+(1)/(3)*(1)/(3^(3))+(1)/(5)*(1)/(3^(5))+….))=

The sum of the series (1)/(2)((1)/(5))^(2)+(2)/(3)((1)/(5))^(3)+(3)/(4)((1)/(5))^(4)+... is

If A=[((2)/(3), 1,(5)/(3)),((1)/(3), (2)/(3), (4)/(3)),((7)/(3), 2, (2)/(3))] and B=[((2)/(5), (3)/(5), 1),((1)/(5), (2)/(5), (4)/(5)),((7)/(5),(6)/(5),(2)/(5))] , then compute 3A-5B .