Home
Class 12
MATHS
(1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/...

`(1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/(7.5^(7))+....=`

A

log `(3//2)`

B

`(1)/(2)log(3//2)`

C

`2log(3//2)`

D

`log(2//3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|93 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+(1)/(7.3^(7))+....=

If (3)/(4)+(1)/(3)((3)/(4))^(3)+(1)/(5)((3)/(4))^(5)+....=log_(e)a,(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+(1)/(7.3^(7))+....=log_(e)b, 1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=log_(e)c then the ascending order of a, b, c is

(1)/(5)+(1)/(2.5^(2))+(1)/(3.5^(3))+(1)/(4.5^(4))+.......=

x=(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+….. y=(1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+…. z=1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+….. Then descending order of x, y, z

log2+2[(1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+….oo]=

(1)/(1.3)+(1)/(2)((1)/(3.5))+(1)/(3)((1)/(5.7))+....=

Statement-I : (1)/(1.2)+(1)/(2.2^(2))+(1)/(3.2^(3))+….oo=log_(e )1//2 Statement-II : ((1)/(5)+(1)/(7))+(1)/(3)((1)/(5^(3))+(1)/(7^(3)))+(1)/(5)((1)/(5^(5))+(1)/(7^(5)))+….+oo=(1)/(2)log2 Which of the above is true

(1)/(2.3)+(1)/(4.5)+(1)/(6.7)+……oo=

(1)/(2)((1)/(5)+(1)/(7))-(1)/(4)((1)/(5^(2))+(1)/(7^(2)))+(1)/(6)((1)/(5^(3))+(1)/(7^(3)))-….oo=