`log_(e)2=`

A

`1+(1)/(2)+(1)/(3)+(1)/(4)+....`

B

`1-(1)/(2)-(1)/(3)-(1)/(4)-....`

C

`(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....`

D

`(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+....`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|93 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

If log_(e )k=2[(3)/(5)+(1)/(3)((3)/(5))^(3)+(1)/(5)((3)/(5))^(5)+….oo] then k =

Observe the following lists. {:("LIST - I","LIST - II"),((A) 8^(th)" term of log"_(e)^(2) " is",(1)log((n+1)/(n-1))),((B)7^(th)" term of log"_(e )(5//4)" is",(2)(-1)/(8)),((C )n^(th)" term of log"_(e )(3//2)" is",(3)(1)/(7.4^(7))),((D)(2)/(n^(2)+1)+(1)/(3)((2n)/(n^(2)+1))^(3)+.....,(4)( (-1)^(n-1))/(n.2^(n))):} The correct match for List-I from List-II is

Observe the following lists {:("List-I","List-II"),((A) 1-(1)/(2)+(1)/(3)-(1)/(4)+(1)/(5)+...oo,(1)(2)/(3)+ (1)/(2)log2),((B)(1)/(5)+(1)/(2.5^(2))+(1)/(3.5^(3))+...oo,(2)log_(e )2),((C )(1)/(n+1)+(1)/(2(n+1)^(2))+(1)/(3(n+1)^(3))...oo,(3)-log_(e )((4)/(5))),((D)1+(1)/(3.3^(3))+(1)/(5.3^(5))+...oo,(4)log_(e )((5)/(4))),(,(5)-log_(e )(1-(1)/(n+1))):} The correct match for List - I from List -II is

1+2(log_(e)a)+(2^(2))/(2!)(log_(e)a)^(2)+(2^(3))/(3!)(log_(e)a)^(3)+....=

2[1+((log_(e)a)^(2))/(2!)+((log_(e)a)^(4))/(4!)+....] =

A : log_(e)3+((log_(e)3)^(2))/(2!)+((log_(e)3)^(3))/(3!)+....=2 R : If x,ainRandagt0" then "a^(x)=1+xlog_(e)a+(x^(2))/(2!)(log_(e)a)^(2)+(x^(3))/(3!)(log_(e)a)^(3)+....

log_(e)3+((log_(e)3)^(2))/(2!)+((log_(e)3)^(3))/(3!)+....=

The 4^(th) term of "log"_(e )(3)/(2) is