Home
Class 12
MATHS
(1)/(5)+(1)/(2.5^(2))+(1)/(3.5^(3))+(1)/...

`(1)/(5)+(1)/(2.5^(2))+(1)/(3.5^(3))+(1)/(4.5^(4))+.......=`

A

`log_(e)((8)/(e))`

B

`log_(e)((2)/(e))`

C

`log_(e)((5)/(4))`

D

`2-log_(e)2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|93 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

(1)/(1.3).(1)/(2)+(1)/(2.4).(1)/(2^(2))+(1)/(3.5).(1)/(2^(3))+....=

(1)/(1.2)-(1)/(2.3)+(1)/(3.4)-(1)/(4.5)+....=

If (3)/(4)+(1)/(3)((3)/(4))^(3)+(1)/(5)((3)/(4))^(5)+....=log_(e)a,(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+(1)/(7.3^(7))+....=log_(e)b, 1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+....=log_(e)c then the ascending order of a, b, c is

Assertion (A) : (1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/(7.5^(7))+…(1)/(2)log((3)/(2)) Reason (R ) : If |x| lt 1 then log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)

x=(1)/(3)+(1)/(3.3^(3))+(1)/(5.3^(5))+….. y=(1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+…. z=1+(1)/(3.2^(2))+(1)/(5.2^(4))+(1)/(7.2^(6))+….. Then descending order of x, y, z

log2+2[(1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+….oo]=

The sum of the series (1)/(2)((1)/(5))^(2)+(2)/(3)((1)/(5))^(3)+(3)/(4)((1)/(5))^(4)+... is

Observe the following lists {:("List-I","List-II"),((A) 1-(1)/(2)+(1)/(3)-(1)/(4)+(1)/(5)+...oo,(1)(2)/(3)+ (1)/(2)log2),((B)(1)/(5)+(1)/(2.5^(2))+(1)/(3.5^(3))+...oo,(2)log_(e )2),((C )(1)/(n+1)+(1)/(2(n+1)^(2))+(1)/(3(n+1)^(3))...oo,(3)-log_(e )((4)/(5))),((D)1+(1)/(3.3^(3))+(1)/(5.3^(5))+...oo,(4)log_(e )((5)/(4))),(,(5)-log_(e )(1-(1)/(n+1))):} The correct match for List - I from List -II is

(1)/(2.3)+(1)/(4.5)+(1)/(6.7)+……oo=

(1)/(2)-(1)/(3(1!))+(1)/(4(2!))-(1)/(5(3!))+....=

DIPTI PUBLICATION ( AP EAMET)-EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)-EXERCISE 1B
  1. (1)/(1.3)+(1)/(2)((1)/(3.5))+(1)/(3)((1)/(5.7))+....=

    Text Solution

    |

  2. (2)/(3)+(1)/(2)((2)/(3))^(2)+(1)/(3)((2)/(3))^(3)+....=

    Text Solution

    |

  3. (1)/(5)+(1)/(2.5^(2))+(1)/(3.5^(3))+(1)/(4.5^(4))+.......=

    Text Solution

    |

  4. The sum of the series (1)/(2)((1)/(5))^(2)+(2)/(3)((1)/(5))^(3)+(3)/(4...

    Text Solution

    |

  5. (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+.....

    Text Solution

    |

  6. (1)/(2)+(3)/(2).(1)/(4)+(5)/(3).(1)/(8)+(7)/(4).(1)/(16)+....=

    Text Solution

    |

  7. Sum of the series (1)/(2)((1)/(2)+(1)/(3))-(1)/(4)((1)/(2^(2))+(1)/(3^...

    Text Solution

    |

  8. (a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)/(3)((a-b)/a)^(3)+....=

    Text Solution

    |

  9. (a-1)-(1)/(2)(a-1)^(2)+(1)/(3)(a-1)^(3)-(1)/(4)(a-1)^(4)+...=

    Text Solution

    |

  10. e^(x-1-(1)/(2)(x-1)^(2)+(1)/(3)(x-1)^(3)-(1)/(4)(x-1)^(4))+...=

    Text Solution

    |

  11. If S=((b-1)-(1)/(2)(b-1)^(2)+(1)/(3)(b-1)^(3)-....)/((a-1)-(1)/(2)(a-1...

    Text Solution

    |

  12. (1)/(x+1)+(1)/(2(x+1)^(2))+(1)/(3(x+1)^(3))+....=

    Text Solution

    |

  13. (x)/(x+1)+(1)/(2)((x)/(x+1))^(2)+(1)/(3)((x)/(x+1))^(3)+....=

    Text Solution

    |

  14. (2ax)/(a^(2)+x^(2))+(1)/(3)((2ax)/(a^(2)+x^(2)))^(3)+(1)/(5)((2ax)/(a^...

    Text Solution

    |

  15. ((2n)/(n^(2)+1))+(1)/(3)((2n)/(n^(2)+1))^(3)+(1)/(5)((2n)/(n^(2)+1))^(...

    Text Solution

    |

  16. (1)/(2x-1)+(1)/(3).(1)/((2x-1)^(3))+(1)/(5)(1)/((2x-1)^(5))+....=

    Text Solution

    |

  17. (1)/(2x+1)+(1)/(3)(1)/((2x+1)^(3))+(1)/(5)(1)/((2x+1)^(5))+....=

    Text Solution

    |

  18. (1)/(2n^(2)-1)+(1)/(3(2n^(2)-1)^(3))+(1)/(5(2n^(2)-1)^(5))+....=

    Text Solution

    |

  19. If xgt0 then (x-1)/(x+1)+(1)/(2)(x^(2)-1)/((x+1)^(2))+(1)/(3)(x^(3)-1)...

    Text Solution

    |

  20. log(1+x+x^(2)+...oo)=

    Text Solution

    |