Home
Class 12
MATHS
If S=((b-1)-(1)/(2)(b-1)^(2)+(1)/(3)(b-1...

If `S=((b-1)-(1)/(2)(b-1)^(2)+(1)/(3)(b-1)^(3)-....)/((a-1)-(1)/(2)(a-1)^(2)+(1)/(3)(a-1)^(3)-...),` then S =

A

`log_(e)b`

B

`log_(a)b`

C

`log_(e)a`

D

`log_(b)a`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|93 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

(a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)/(3)((a-b)/a)^(3)+.... =

A = ((1)/(2),(3)/(2)) , B ((3)/(2),(-1)/(2)) then BA = .....

If 1/((1-2x)(1+3x))=A/(1-2x)+B/(1+3x) , then 2B =

((x+1))/((2x-1)(3x+1))=A/((2x-1))+B/((3x+1)) rArr 16A+9B=

If |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|=|(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1)| , then the two triangles with vertices (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) and (a_(1),b_(1)),(a_(2),b_(2)),(a_(3),b_(3)) must be

|(1,1,1),(a^(2),b^(2),c^(2)),(a^(3),b^(3),c^(3))|=

If sin^(-1)(a-(a^(2))/3+(a^(3))/9+…..)+cos^(-1)(1+b+b^(2)=……..)=(pi)/2 then

If S=(1)/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+...."to "oo , then S =

DIPTI PUBLICATION ( AP EAMET)-EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)-EXERCISE 1B
  1. (a-1)-(1)/(2)(a-1)^(2)+(1)/(3)(a-1)^(3)-(1)/(4)(a-1)^(4)+...=

    Text Solution

    |

  2. e^(x-1-(1)/(2)(x-1)^(2)+(1)/(3)(x-1)^(3)-(1)/(4)(x-1)^(4))+...=

    Text Solution

    |

  3. If S=((b-1)-(1)/(2)(b-1)^(2)+(1)/(3)(b-1)^(3)-....)/((a-1)-(1)/(2)(a-1...

    Text Solution

    |

  4. (1)/(x+1)+(1)/(2(x+1)^(2))+(1)/(3(x+1)^(3))+....=

    Text Solution

    |

  5. (x)/(x+1)+(1)/(2)((x)/(x+1))^(2)+(1)/(3)((x)/(x+1))^(3)+....=

    Text Solution

    |

  6. (2ax)/(a^(2)+x^(2))+(1)/(3)((2ax)/(a^(2)+x^(2)))^(3)+(1)/(5)((2ax)/(a^...

    Text Solution

    |

  7. ((2n)/(n^(2)+1))+(1)/(3)((2n)/(n^(2)+1))^(3)+(1)/(5)((2n)/(n^(2)+1))^(...

    Text Solution

    |

  8. (1)/(2x-1)+(1)/(3).(1)/((2x-1)^(3))+(1)/(5)(1)/((2x-1)^(5))+....=

    Text Solution

    |

  9. (1)/(2x+1)+(1)/(3)(1)/((2x+1)^(3))+(1)/(5)(1)/((2x+1)^(5))+....=

    Text Solution

    |

  10. (1)/(2n^(2)-1)+(1)/(3(2n^(2)-1)^(3))+(1)/(5(2n^(2)-1)^(5))+....=

    Text Solution

    |

  11. If xgt0 then (x-1)/(x+1)+(1)/(2)(x^(2)-1)/((x+1)^(2))+(1)/(3)(x^(3)-1)...

    Text Solution

    |

  12. log(1+x+x^(2)+...oo)=

    Text Solution

    |

  13. If |x|lt1 then (1)/(2)x^(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+....=

    Text Solution

    |

  14. (a-1)/(a+1)+(1)/(3)((a-1)/(a+1))^(3)+(1)/(5)((a-1)/(a+1))^(5)+....=

    Text Solution

    |

  15. If |x|lt1 and y=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+..., then x =

    Text Solution

    |

  16. If y=x+(x^(2))/(2)+(x^(3))/(3)+....oo, then x =

    Text Solution

    |

  17. |a|lt1,b=underset(k=1)overset(oo)Sigma(a^(k))/(k)impliesa=

    Text Solution

    |

  18. If y=(1)/(2x^(2)-1)" then "y+(y^(3))/(3)+(y^(5))/(5)+....=

    Text Solution

    |

  19. (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+....=

    Text Solution

    |

  20. (1)/(1.3).(1)/(2)+(1)/(2.4).(1)/(2^(2))+(1)/(3.5).(1)/(2^(3))+....=

    Text Solution

    |