Home
Class 12
MATHS
(1)/(x+1)+(1)/(2(x+1)^(2))+(1)/(3(x+1)^(...

`(1)/(x+1)+(1)/(2(x+1)^(2))+(1)/(3(x+1)^(3))+....`=

A

`log[(x)/(x+1)]`

B

`log[(x+1)/(x)]`

C

`log[(x+1)/(x-1)]`

D

`log[(x-1)/(x+1)]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 1|6 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|5 Videos
  • EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 1A|93 Videos
  • ELLIPSE

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 SET - 2|1 Videos
  • FUNCTIONS

    DIPTI PUBLICATION ( AP EAMET)|Exercise EXERCISE 2 (SPECIAL TYPE QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

(x)/(x+1)+(1)/(2)((x)/(x+1))^(2)+(1)/(3)((x)/(x+1))^(3)+....=

If xgt0 then (x-1)/(x+1)+(1)/(2)(x^(2)-1)/((x+1)^(2))+(1)/(3)(x^(3)-1)/((x+1)^(3))+....=

(1)/(2x+1)+(1)/(3)(1)/((2x+1)^(3))+(1)/(5)(1)/((2x+1)^(5))+....=

2[(1)/(2x+1)+(1)/(3*(2x+1)^(3))+(1)/(5*(2x+1)^(5))+…..oo]=

e^(x-1-(1)/(2)(x-1)^(2)+(1)/(3)(x-1)^(3)-(1)/(4)(x-1)^(4))+... =

(1)/(2x-1)+(1)/(3).(1)/((2x-1)^(3))+(1)/(5)(1)/((2x-1)^(5))+....=

A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2)) R : log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...

DIPTI PUBLICATION ( AP EAMET)-EXPONENTIAL SERIES & LOGARITHMIC SERIES (APPENDIX-1)-EXERCISE 1B
  1. e^(x-1-(1)/(2)(x-1)^(2)+(1)/(3)(x-1)^(3)-(1)/(4)(x-1)^(4))+...=

    Text Solution

    |

  2. If S=((b-1)-(1)/(2)(b-1)^(2)+(1)/(3)(b-1)^(3)-....)/((a-1)-(1)/(2)(a-1...

    Text Solution

    |

  3. (1)/(x+1)+(1)/(2(x+1)^(2))+(1)/(3(x+1)^(3))+....=

    Text Solution

    |

  4. (x)/(x+1)+(1)/(2)((x)/(x+1))^(2)+(1)/(3)((x)/(x+1))^(3)+....=

    Text Solution

    |

  5. (2ax)/(a^(2)+x^(2))+(1)/(3)((2ax)/(a^(2)+x^(2)))^(3)+(1)/(5)((2ax)/(a^...

    Text Solution

    |

  6. ((2n)/(n^(2)+1))+(1)/(3)((2n)/(n^(2)+1))^(3)+(1)/(5)((2n)/(n^(2)+1))^(...

    Text Solution

    |

  7. (1)/(2x-1)+(1)/(3).(1)/((2x-1)^(3))+(1)/(5)(1)/((2x-1)^(5))+....=

    Text Solution

    |

  8. (1)/(2x+1)+(1)/(3)(1)/((2x+1)^(3))+(1)/(5)(1)/((2x+1)^(5))+....=

    Text Solution

    |

  9. (1)/(2n^(2)-1)+(1)/(3(2n^(2)-1)^(3))+(1)/(5(2n^(2)-1)^(5))+....=

    Text Solution

    |

  10. If xgt0 then (x-1)/(x+1)+(1)/(2)(x^(2)-1)/((x+1)^(2))+(1)/(3)(x^(3)-1)...

    Text Solution

    |

  11. log(1+x+x^(2)+...oo)=

    Text Solution

    |

  12. If |x|lt1 then (1)/(2)x^(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+....=

    Text Solution

    |

  13. (a-1)/(a+1)+(1)/(3)((a-1)/(a+1))^(3)+(1)/(5)((a-1)/(a+1))^(5)+....=

    Text Solution

    |

  14. If |x|lt1 and y=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+..., then x =

    Text Solution

    |

  15. If y=x+(x^(2))/(2)+(x^(3))/(3)+....oo, then x =

    Text Solution

    |

  16. |a|lt1,b=underset(k=1)overset(oo)Sigma(a^(k))/(k)impliesa=

    Text Solution

    |

  17. If y=(1)/(2x^(2)-1)" then "y+(y^(3))/(3)+(y^(5))/(5)+....=

    Text Solution

    |

  18. (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+....=

    Text Solution

    |

  19. (1)/(1.3).(1)/(2)+(1)/(2.4).(1)/(2^(2))+(1)/(3.5).(1)/(2^(3))+....=

    Text Solution

    |

  20. 3x-(5x^(2))/(2)+(9x^(3))/(3)-(17x^(4))/(4)+....+(-1)^(n-1)((2^(n)+1))/...

    Text Solution

    |