Home
Class 12
MATHS
if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(...

`if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(-1,2,1),(1,2,3):}],`then verify that `(i) (A+B)'=A'+B'(ii) (A-B)'=A'-B'`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the given statements, we will follow these steps: ### Given: - \( A' = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \) - \( B = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \) ### Step 1: Find \( A \) Since \( A' \) is the transpose of \( A \), we can find \( A \) by transposing \( A' \): \[ A = (A')' = \begin{pmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{pmatrix} \] ### Step 2: Find \( B' \) Now, we find the transpose of \( B \): \[ B' = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \] ### Step 3: Verify \( (A + B)' = A' + B' \) #### Step 3.1: Calculate \( A + B \) To add matrices \( A \) and \( B \), we need to ensure they have the same dimensions. Here, \( A \) is \( 2 \times 3 \) and \( B \) is \( 2 \times 3 \): \[ A + B = \begin{pmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 - 1 & -1 + 2 & 0 + 1 \\ 4 + 1 & 2 + 2 & 1 + 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ 5 & 4 & 4 \end{pmatrix} \] #### Step 3.2: Find \( (A + B)' \) Now, we take the transpose of \( A + B \): \[ (A + B)' = \begin{pmatrix} 2 & 1 & 1 \\ 5 & 4 & 4 \end{pmatrix}' = \begin{pmatrix} 2 & 5 \\ 1 & 4 \\ 1 & 4 \end{pmatrix} \] #### Step 3.3: Calculate \( A' + B' \) Now we add \( A' \) and \( B' \): \[ A' + B' = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 3 - 1 & 4 + 1 \\ -1 + 2 & 2 + 2 \\ 0 + 1 & 1 + 3 \end{pmatrix} = \begin{pmatrix} 2 & 5 \\ 1 & 4 \\ 1 & 4 \end{pmatrix} \] ### Conclusion for Part (i) Since \( (A + B)' = A' + B' \), we have verified the first statement. ### Step 4: Verify \( (A - B)' = A' - B' \) #### Step 4.1: Calculate \( A - B \) \[ A - B = \begin{pmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{pmatrix} - \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 + 1 & -1 - 2 & 0 - 1 \\ 4 - 1 & 2 - 2 & 1 - 3 \end{pmatrix} = \begin{pmatrix} 4 & -3 & -1 \\ 3 & 0 & -2 \end{pmatrix} \] #### Step 4.2: Find \( (A - B)' \) Now, we take the transpose of \( A - B \): \[ (A - B)' = \begin{pmatrix} 4 & -3 & -1 \\ 3 & 0 & -2 \end{pmatrix}' = \begin{pmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{pmatrix} \] #### Step 4.3: Calculate \( A' - B' \) Now we subtract \( B' \) from \( A' \): \[ A' - B' = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 3 + 1 & 4 - 1 \\ -1 - 2 & 2 - 2 \\ 0 - 1 & 1 - 3 \end{pmatrix} = \begin{pmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{pmatrix} \] ### Conclusion for Part (ii) Since \( (A - B)' = A' - B' \), we have verified the second statement. ### Final Result Both statements are verified: 1. \( (A + B)' = A' + B' \) 2. \( (A - B)' = A' - B' \)

To verify the given statements, we will follow these steps: ### Given: - \( A' = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \) - \( B = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \) ### Step 1: Find \( A \) Since \( A' \) is the transpose of \( A \), we can find \( A \) by transposing \( A' \): ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.2|22 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A'=[(3,4),(-1,2),(0,1)] and B=[(-1,2,1),(1,2,3)] , then verify that (A+B)'=A'+B'

If A=[{:(0,-1,2),(4,3,-4):}] and B=[{:(4,0),(1,3),(2,6):}] then verify that (i) (A')'=A (ii) (AB)'=B'A'

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'

If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] , then verify AB = BA or not?

If A=[(3,sqrt(3),2),(4,2,0)] and B=[(2,-1,2),(1,2,4)] then verify that : (i) (A')'=A (ii) (A+B)'=A'+B' (iii) (kB)'=kB' , where k is any constant.

If A={:[(1,2,3),(3,2,1)]:},B={:[(1,-1,4),(2,3,1)]:} , verify that (i) (B')'=B , (ii) (a-B)'=A'-B' (iii) (A+B)'=A'+B' , (iv) (kA)'=kA', where k is any constant (v) (2A+3B)'=2A'+3B'

if A=[(1,2),(3,4):}],B=[{:(-1,0),(2,3):}]and C=[{:(1,-1),(0,1):}], then show that : (i) A(B+C)=AB+AC (ii) (A-B)C=AC-BC.

if A=[{:(2,1),(0,3),(1,-1):}] and B=[{:(0,3,5),(1,-7,2):}] , then verify (BA)^(T) = A^(T)B^(T) .

A=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}] Verify AB=BA or not.

If A=[{:(" "2,-3,5),(-1," "0,3):}]" and "B=[{:(3,2,-2),(4,-3," "1):}] , verify that (A+B)=(B+A).