Home
Class 12
MATHS
For the matrices A and B, verify that (A...

For the matrices A and B, verify that `(A B)^(prime)=B^(prime)A^(prime)`, where(i) `A=[1-4 3]`,`B=[-1 2 1]` (iii) `A=[0 1 2]`,`B=[1 5 7]`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`(i) A=[{:(-1),(4),(3):}] implies A'=[-1" " 4 " "3]`
`b=[-1" " 2" " 1]implies B]=[{:(-1),(2),(1):}]`
`therefore AB=[{:(-1),(4),(3):}][-1" " 2" " 1]=[{:(1,-2,-1),(-4,8,4),(-3,6,3):}]`
`implies (AB')'=[{:(1,-4,-3),(-2,8,6),(-1,4,3):}]`
`and B'A =[{:(-1),(2),(1):}][-1" " 4" "3]=[{:(1,-4,-3),(-2,8,6),(-1,4,3):}]`
`therefore (AB)'=B'A'` hence proved
`(ii) A=[{:(0),(1),(2):}]implies A'[0" " 1" " 2]`
`B=[1" "5" "7]=[{:(0,0,0),(1,5,7),(2,10,14):}]`
`implies (AB)'=[{:(0,1,2),(0,5,10),(0,7,14):}]`
`implies B'A'=[{:(1),(5),(7):}][0" " 1" " 2]=[{:(0,1,2),(0,5,10),(0,7,14):}]`
`therefore (AB')' =B'A'` hence proved .
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.2|22 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

For the matrices A and B, verify that (AB)'=B'A', where (i) A=[[1],[-4],[3]], B=[[-1,2,1]]

For each of the following pairs of matrices A and B, verify that (AB)'=(B'A'): (i) A=[{:(1,3),(2,4):}]" and "B=[{:(1,4),(2,5):}] (ii) A=[{:(3,-1),(-2,-2):}]" and "B=[{:(1,-3),(2,-1):}] A=[{:(-1),(2),(3):}]" and "B=[-2" "-1" "-4] (iv) A=[{:(-1," "2,-3),(4,-5," "6):}]" and "B=[{:(" "3,-4),(" "2," "1),(-1," "0):}]

If A=[[-1 ,2, 3],[ 5 ,7, 9],[-2 ,1, 1]] and B=[[-4, 1,-5],[ 1, 2,0 ],[1, 3, 1]] , then verify that (i) (A+B)^(prime)=A^(prime)+B^(prime) (ii) (A-B)^(prime)=A^(prime)-B^(prime)

If A=[[3,4],[ -1,2],[0, 1]] and B=[[-1, 2, 1],[1,2, 3]] , then verify that (A+B)^(prime)=A^(prime)+B^(prime)

If A=[[3],[5],[2]] and B=[1,0,4] , verify that (AB)\'=B\'A\'

If A is an 3xx3 non-singular matrix such that A A^(prime)=A^(prime)A a n dB=A^(-1)A^(prime), then B B ' equals: (a) B^(-1) (b) (B^(-1))' (c) I+B (d) I

If A= [(3,1),(4,0)] and B=[(4,0),(2,5)] then verify that (AB)^(-1)= B^(-1) A^(-1)

Find the minors and cofactors of elements '-3^(prime),\ \ ^(prime)5^(prime),\ \ -1^(prime)&\ '7' in the determinant |2-3 1 4 0 5-1 6 7|

If U" "={1," "2," "3," "4," "5," "6," "7," "8," "9" "} , A=" "{2," "4," "6," "8} andB" "=" "{" "2," "3," "5," "7} . Verify that (i) (AuuB)^(prime)=A^(prime)nnB^(prime) (ii) (AuuB)^(prime)=A^(prime)uuB^(prime)

If A=[[3,1],[4,0]],B=[[4,0],[2,5]] ,verify that (AB)^(-1)=B^(-1)A^(-1)