Home
Class 12
MATHS
Find 1/2(A+Aprime)and 1/2(A-Aprime), whe...

Find `1/2(A+Aprime)`and `1/2(A-Aprime)`, when `A=[0a b-a0c-b-c0]`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`A=[{:(0,a,b),(-a,0,c),(-b,-c,0):}].`
`implies A'=[{:(0,a,b),(-a,0,c),(-b,-c,0):}]=[{:(0,-a,-b),(a,0,-c),(b,c,o):}]`
`therefore A+A'=[{:(0,a,b),(-a,0,c),(-b,-c,0):}]=[{:(0,-a,-b),(a ,0,-c),(b,c,0):}]`
`=[{:(0,0,0),(0,0,0),(0,0,0):}]`
`implies (1)/(2)(A+A')=[{:(0,0,0),(0,0,0),(0,0,0):}]`
`and A-A'=[{:(0,a,b),(-a,0,c),(-b,-c,0):}]-[{:(0,-a,-b),(a,0,-c),(b,c,0):}]`
`=[{:(0,2a,2b),(-2a,0,2C),(-2b,-2c,0):}]`
`implies(1)/(2)(A-A')=[{:(0,a,b),(-a,0,C),(-b,-c,0):}]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exerice|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.2|22 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find quad (1)/(2)(A+A') and (1)/(2)(A-A') ,when A=[[0,0,c-a,-c,0]]

If G and Gprime are the centroids of the triangle ABC and AprimeBprimeCprime, then the value of bar(A Aprime)+bar(B Bprime)+bar(C Cprime) equals

For a>b>c>0, if the distance between (1,1) and the point of intersection of the line ax+by-c=0 and bx+ay+c=0 is less than 2sqrt(2) then,(A)a+b-c>0(B)a-b+c 0(D)a+b-c<0

If A=[[0,a,b],[-a,0,c],[-b,-c,0]] find (1)/(2)(A+A') and (1)/(2)(A-A')

If A=[[0,a,b],[-a,0,c],[-b,-c,0]] , find 1/2 (A+A\') and 1/2 (A-A\')

If Aprime=[-2 3 1 2] and B=[-1 0 1 2] , then find (A+2B)^(prime) .

If A=[(alpha, 0,0),(0,b,0),(0,0,c)] and a,b,c are non zero real numbers, then A^-1 is (A) 1/(abc) [(1,0,0),(0,1,0),(0,0,1)] (B) 1/(abc) [(a,0,0),(0,b,0),(0,c,0)] (C) 1/(abc) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)] (D) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)]

For the following matrices verify the associativity of matrix multiplication i.e. (A B)C=A(B C)dot A=[1 2 0-1 0 1] , B=[1 0-1 2 0 3] and C=[1-1] (ii) A=[4 2 3 1 1 2 3 0 1] , B=[1-1 1 0 1 2 2-1 1] and C=[1 2-1 3 0 1 0 0 1] .

If a+b+c=0, an^(2)+bn+c=0 and a+bn+cn^(2)=0 where n!=0, 1 , then prove that a=b=c=0