Home
Class 12
CHEMISTRY
Calculate resonance energy of C(6)H(6) (...

Calculate resonance energy of `C_(6)H_(6) (g)`.
`{:("Given :",Delta_(f)[C_(6)H_(6)(g)]=-360 kJ mol^(-1)),(,DeltaH_("Sub")[C("graphite")]=716 kJ mol^(-1)),(,B.E._(H-H)=437 kJ mol^(-1)),(,B.E._(C=C)=620 kJ mol^(-1)),(,B.E._(C-C)=340 kJ mol^(-1)),(,B.E._(C-H)=490 kJ mol^(-1)):}`

Text Solution

Verified by Experts

For `C_(6)H_(6)`
`6C(s)+3H_(2)(g) rarr C_(6)H_(6), DeltaH_(exp)=-360" kJ mol"^(-1)`
`:. DeltaH_("cal")" "=-[3 (C-C)+3(C=C)+6(C-H)]+[6C_(S rarr g)+3(H-H)]`
`=-[3xx340+3xx620+6xx490]+[6xx716+3xx437]`
`=- 5820+5607=- 213" kJ mol"^(-1)`
`:.` Resonance energy =Exp. `DeltaH_(f)-` calculated `DeltaH_(f)`
`=-360-(-213)=-360+213 =-147" kJ mol"^(-1)`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Calculate DeltaH_(f)^(@) of C_(6)(s) from the following data:, DeltaH_(comb) of C_(6)H_(12)O_(6)(s)=-2816kJ" "mol^(-1),DeltaH_(f)^(@) of CO_(2)(g)=-393.5kJ" "mol^(-1) and DeltaH_(f(H_(2)O))^(@)=-285.9kJ" "mol^(-1) .

Calculate the resonance energy of gaseous benzene form the following data. BE(C-H) = 416.3 kJ mol^(-1) BE(C-C) = 331.4 kJ mol^(-1) BE(C=C) = 591.1 kJ mol^(-1) Delta_("sub")H^(Theta)(C,"graphite") = 718.4 kJ mol^(-1) Delta_("diss")H^(Theta)(H_(2),g) = 435.9 kJ mol^(-1) Delta_(f)H^(Theta) ("benzene", g) = 82.9 kJ mol^(-1)

Calculate the enthalpy change for the process C Cl_(4)(g) rarr C(g)+4Cl(g) and calculate bond enthalpy of C-Cl in C Cl_(4)(g) . Delta_(vap)H^(Θ)(C Cl_(4))=30.5 kJ mol^(-1) Delta_(f)H^(Θ)(C Cl_(4))=-135.5 kJ mol^(-1) Delta_(a)H^(Θ)(C )=715.0 kJ mol^(-1) , where Delta_(a)H^(Θ) is enthalpy of atomisation Delta_(a)H^(Θ)(Cl_(2))=242 kJ mol^(-1)

Consider the following energy diagram for the reaction. A_(2)+B_(2) ? 2AB {:("Column I","Column II"),("(A)"E_(a)(f),"(P)"-10" kJ mol"^(-1)),("(B)"E_(a) (b), "(Q)" 40" kJ mol"^(-1)),("(C)" Delta H_(r), "(R)" 30" kJ mol"^(-1)),("(D)" E_(T),"(S)" 50" kJ mol"^(-1)):}

Calculate the enthalpy change during the reaction : H_(2(g))+Br_(2(g))rarr 2HBr_((g)) Given, e_(H-H)=435kJ mol^(-1),e_(Br-Br)=192kJ mol^(-1) and e_(H-Br)=368kJ mol^(-1).

Calculate the lattice energy of the reaction Li^(o+)(g) +CI^(Theta) (g) rarr LiCI(s) from the following data: Delta_("sub")H^(Theta)(Li) = 160.67 kJ mol^(-1), (1)/(2)D(CI_(2)) = 122.17 kJ mol^(-1) IP(Li) = 520.07 kJ mol^(-1),E_(A)(CI) = - 365.26 kJ mol^(-1) and Delta_(f)H^(Theta)(LiCI) =- 401.66 kJ mol^(-1)