Home
Class 12
MATHS
The number of triplets (a, b, c) of posi...

The number of triplets (a, b, c) of positive integers satisfying the equation `|(a^(3)+1,a^(2)b,a^(2)c),(ab^(2),b^(3)+1,b^(2)c),(ac^(2),bc^(2),c^(3)+1)|=30` is equal to

A

3

B

6

C

9

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the number of triplets \((a, b, c)\) of positive integers satisfying the equation \[ |(a^3 + 1, a^2 b, a^2 c), (ab^2, b^3 + 1, b^2 c), (ac^2, bc^2, c^3 + 1)| = 30, \] we will follow these steps: ### Step 1: Simplify the Determinant We start with the given determinant and manipulate it. We can divide the first row by \(a\), the second row by \(b\), and the third row by \(c\): \[ |(a^3 + 1, a^2 b, a^2 c), (ab^2, b^3 + 1, b^2 c), (ac^2, bc^2, c^3 + 1)|. \] ### Step 2: Rewriting the Determinant After dividing, we can rewrite the determinant as: \[ |(a^2, b^2 + \frac{1}{b}, c^2), (b^2, b^2 + 1, c^2), (c^2, b^2, c^2 + \frac{1}{c})|. \] ### Step 3: Multiply Rows Next, we multiply the first row by \(a\), the second row by \(b\), and the third row by \(c\): \[ |(a^3 + 1, a^2 b, a^2 c), (ab^2, b^3 + 1, b^2 c), (ac^2, bc^2, c^3 + 1)|. \] ### Step 4: Add Rows Now, we add the three rows together. This gives us: \[ |(a^3 + b^3 + c^3 + 3, a^2 b + b^2 + c^2, a^2 c + b^2 c + c^3 + 1)|. \] ### Step 5: Setting Up the Equation The determinant simplifies to: \[ a^3 + b^3 + c^3 + 1 = 30. \] Thus, we have: \[ a^3 + b^3 + c^3 = 29. \] ### Step 6: Finding Positive Integer Solutions Now we need to find the positive integer solutions to the equation \(a^3 + b^3 + c^3 = 29\). ### Step 7: Testing Possible Values We can test combinations of \(a\), \(b\), and \(c\): 1. **Case 1**: \(a = 3, b = 1, c = 1\) gives \(27 + 1 + 1 = 29\). 2. **Case 2**: \(a = 1, b = 3, c = 1\) gives \(1 + 27 + 1 = 29\). 3. **Case 3**: \(a = 1, b = 1, c = 3\) gives \(1 + 1 + 27 = 29\). These give us the triplets \((3, 1, 1)\), \((1, 3, 1)\), and \((1, 1, 3)\). ### Step 8: Counting Unique Triplets The unique triplets that satisfy the equation are: - \((3, 1, 1)\) - \((1, 3, 1)\) - \((1, 1, 3)\) Since the order matters in triplets, we can permute these values. The total number of distinct permutations for the triplet \((3, 1, 1)\) is given by: \[ \frac{3!}{2!} = 3. \] ### Final Count Thus, we have 3 unique arrangements for each of the triplet combinations. ### Conclusion The total number of triplets \((a, b, c)\) of positive integers satisfying the equation is: \[ \boxed{3}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 74

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 76

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2) .

|[a,a^(2),bc],[b,b^(2),ca],[c,c^(2),ab]|=|[1,a^(2),a^(3)],[1,b^(2),b^(3)],[1,c^(2),c^(3)]|

|(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

det[[1,a,a^(2)+bc1,b,b^(2)+ac1,c,c^(2)+ab]] is equal to

If a,b,c are positive integers satisfying (a)/(b+c)+(b)/(c+a)+(c)/(a+b)=(3)/(2) hen the value of abc+(1)/(abc)

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 75-MATHEMATICS
  1. The smallest positive integral value of a, such that the function f(x)...

    Text Solution

    |

  2. The value of Sigma(i=1)^(n)(.^(n+1)C(i)-.^(n)C(i)) is equal to

    Text Solution

    |

  3. If the integral int(0)^(2)(dx)/(sinx+sin(2-x))=A, then the integral be...

    Text Solution

    |

  4. If the reciprocals of 2, log((3^(x)-4))4 and log(3^(x)+(7)/(2))4 are i...

    Text Solution

    |

  5. From point P(4,0) tangents PA and PB are drawn to the circle S: x^2+y^...

    Text Solution

    |

  6. Consider a plane P:2x+y-z=5, a line L:(x-3)/(2)=(y+1)/(-3)=(z-2)/(-1) ...

    Text Solution

    |

  7. The number of triplets (a, b, c) of positive integers satisfying the e...

    Text Solution

    |

  8. The locus of the trisection point of any arbitrary double ordinate of ...

    Text Solution

    |

  9. If A={1,3,5,7,9,11,13,15}, B and N={2,4,……,16} is the universal set, t...

    Text Solution

    |

  10. Let f:(6, 8)rarr (9, 11) be a function defined as f(x)=x+[(x)/(2)] (wh...

    Text Solution

    |

  11. Let f(x+y)=f(x).f(y) for all x, y in R and f(x)=1+x phi(x)log3. If lim...

    Text Solution

    |

  12. If the standard deviation of the numbers 2, 4, a and 10 is 3.5, then w...

    Text Solution

    |

  13. The domain of the function f(x)=4sqrt(cos^(-1)((1-|x|)/(2))) is

    Text Solution

    |

  14. A word has 4 identical letters and rest all are distinct letters. If t...

    Text Solution

    |

  15. The integral I=int sec^(3)x tan^(3)xdx is equal to (where, C is the co...

    Text Solution

    |

  16. If omega is the imaginary cube roots of unity, then the number of p...

    Text Solution

    |

  17. If the area bounded by y+|x-pi|le pi and y ge (pi)/(2) is Kpi^(2) sq. ...

    Text Solution

    |

  18. If sqrt3 sin x+cosx-2=(y-1)^(2)" for "0lexle 8pi, then the number of v...

    Text Solution

    |

  19. The probability that a married man watches a certain T.V. show is 0.6 ...

    Text Solution

    |

  20. The value of lim(xrarr1)Sigma(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is eq...

    Text Solution

    |