Home
Class 12
MATHS
Let f(x+y)=f(x).f(y) for all x, y in R a...

Let `f(x+y)=f(x).f(y)` for all `x, y in R` and `f(x)=1+x phi(x)log3.` If `lim_(xrarr0)phi(x)=1,` then f'(x) is equal to

A

`log3^(f(x))`

B

`log[f(x)]^(3)`

C

`log3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given functional equation and the expression for \( f(x) \). 1. **Given Functional Equation**: \[ f(x+y) = f(x) \cdot f(y) \quad \text{for all } x, y \in \mathbb{R} \] This indicates that \( f(x) \) is an exponential function. 2. **Given Function**: \[ f(x) = 1 + x \phi(x) \log 3 \] where \( \lim_{x \to 0} \phi(x) = 1 \). 3. **Finding \( f'(x) \)**: We will differentiate \( f(x) \) using the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] 4. **Substituting in the Functional Equation**: Using the functional equation, we have: \[ f(x+h) = f(x) \cdot f(h) \] Thus, \[ f'(x) = \lim_{h \to 0} \frac{f(x) \cdot f(h) - f(x)}{h} \] This simplifies to: \[ f'(x) = f(x) \cdot \lim_{h \to 0} \frac{f(h) - 1}{h} \] 5. **Finding \( f(h) \)**: From the given function: \[ f(h) = 1 + h \phi(h) \log 3 \] Therefore, \[ f(h) - 1 = h \phi(h) \log 3 \] 6. **Substituting Back**: Now substituting this back into the limit: \[ \lim_{h \to 0} \frac{f(h) - 1}{h} = \lim_{h \to 0} \phi(h) \log 3 \] Given that \( \lim_{h \to 0} \phi(h) = 1 \), we have: \[ \lim_{h \to 0} \phi(h) \log 3 = \log 3 \] 7. **Final Expression for \( f'(x) \)**: Thus, we can write: \[ f'(x) = f(x) \cdot \log 3 \] 8. **Substituting \( f(x) \)**: Now substituting \( f(x) = 1 + x \phi(x) \log 3 \): \[ f'(x) = (1 + x \phi(x) \log 3) \cdot \log 3 \] 9. **Conclusion**: Therefore, the final expression for \( f'(x) \) is: \[ f'(x) = (1 + x \phi(x) \log 3) \cdot \log 3 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 74

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 76

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and f(x)=1+xg(x) where lim_(x to 0) g(x)=1 . Then f'(x) is equal to

Suppose a differntiable function f(x) satisfies the identity f(x+y)=f(x)+f(y)+xy^(2)+xy for all real x and y .If lim_(x rarr0)(f(x))/(x)=1 then f'(3) is equal to

Let f(x+y)=f(x)f(y) and where f(x)=1+xg(x)phi(x) , lim_(xto0)g(x)=a and lim_(xto0)phi(x)=b Then what is f'(x) equal to ?

Let f:R to R be a function given by f(x+y)=f(x) f(y)"for all "x,y in R "If "f(x)=1+xg(x),log_(e)2, "where "lim_(x to 0) g(x)=1. "Then, f'(x)=

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

Let f : R to R be a function given by f(x+y)=f(x)f(y) for all x , y in R If f(x) ne 0 for all x in R and f'(0) exists, then f'(x) equals

Let f(x+y)=f(x)f(y) for all x,y in R and f(0)!=0. Let phi(x)=(f(x))/(1+f(x)^(2)). Then prove that phi(x)-phi(-x)=0

NTA MOCK TESTS-NTA JEE MOCK TEST 75-MATHEMATICS
  1. The smallest positive integral value of a, such that the function f(x)...

    Text Solution

    |

  2. The value of Sigma(i=1)^(n)(.^(n+1)C(i)-.^(n)C(i)) is equal to

    Text Solution

    |

  3. If the integral int(0)^(2)(dx)/(sinx+sin(2-x))=A, then the integral be...

    Text Solution

    |

  4. If the reciprocals of 2, log((3^(x)-4))4 and log(3^(x)+(7)/(2))4 are i...

    Text Solution

    |

  5. From point P(4,0) tangents PA and PB are drawn to the circle S: x^2+y^...

    Text Solution

    |

  6. Consider a plane P:2x+y-z=5, a line L:(x-3)/(2)=(y+1)/(-3)=(z-2)/(-1) ...

    Text Solution

    |

  7. The number of triplets (a, b, c) of positive integers satisfying the e...

    Text Solution

    |

  8. The locus of the trisection point of any arbitrary double ordinate of ...

    Text Solution

    |

  9. If A={1,3,5,7,9,11,13,15}, B and N={2,4,……,16} is the universal set, t...

    Text Solution

    |

  10. Let f:(6, 8)rarr (9, 11) be a function defined as f(x)=x+[(x)/(2)] (wh...

    Text Solution

    |

  11. Let f(x+y)=f(x).f(y) for all x, y in R and f(x)=1+x phi(x)log3. If lim...

    Text Solution

    |

  12. If the standard deviation of the numbers 2, 4, a and 10 is 3.5, then w...

    Text Solution

    |

  13. The domain of the function f(x)=4sqrt(cos^(-1)((1-|x|)/(2))) is

    Text Solution

    |

  14. A word has 4 identical letters and rest all are distinct letters. If t...

    Text Solution

    |

  15. The integral I=int sec^(3)x tan^(3)xdx is equal to (where, C is the co...

    Text Solution

    |

  16. If omega is the imaginary cube roots of unity, then the number of p...

    Text Solution

    |

  17. If the area bounded by y+|x-pi|le pi and y ge (pi)/(2) is Kpi^(2) sq. ...

    Text Solution

    |

  18. If sqrt3 sin x+cosx-2=(y-1)^(2)" for "0lexle 8pi, then the number of v...

    Text Solution

    |

  19. The probability that a married man watches a certain T.V. show is 0.6 ...

    Text Solution

    |

  20. The value of lim(xrarr1)Sigma(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is eq...

    Text Solution

    |