Home
Class 12
MATHS
If the standard deviation of the numbers...

If the standard deviation of the numbers 2, 4, a and 10 is 3.5, then which of the following is true?

A

`3a^(2)-23a+24=0`

B

`3a^(2)-26a+46=0`

C

`3a^(2)-32a+28=0`

D

`3a^(2)-34a+45=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) such that the standard deviation of the numbers \( 2, 4, a, \) and \( 10 \) is \( 3.5 \). ### Step-by-Step Solution: 1. **Understand the Standard Deviation Formula**: The standard deviation \( \sigma \) is given by the formula: \[ \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}} \] where \( \mu \) is the mean of the numbers, and \( n \) is the number of values. 2. **Calculate the Mean**: The mean \( \mu \) of the numbers \( 2, 4, a, 10 \) is: \[ \mu = \frac{2 + 4 + a + 10}{4} = \frac{16 + a}{4} \] 3. **Calculate the Variance**: The variance \( \sigma^2 \) is given by: \[ \sigma^2 = \frac{(2 - \mu)^2 + (4 - \mu)^2 + (a - \mu)^2 + (10 - \mu)^2}{4} \] We know that \( \sigma = 3.5 \), so: \[ \sigma^2 = (3.5)^2 = 12.25 \] 4. **Substituting the Mean into the Variance Formula**: We need to compute each term: - \( (2 - \mu)^2 = \left(2 - \frac{16 + a}{4}\right)^2 = \left(\frac{8 - a}{4}\right)^2 = \frac{(8 - a)^2}{16} \) - \( (4 - \mu)^2 = \left(4 - \frac{16 + a}{4}\right)^2 = \left(\frac{16 - a}{4}\right)^2 = \frac{(16 - a)^2}{16} \) - \( (a - \mu)^2 = \left(a - \frac{16 + a}{4}\right)^2 = \left(\frac{3a - 16}{4}\right)^2 = \frac{(3a - 16)^2}{16} \) - \( (10 - \mu)^2 = \left(10 - \frac{16 + a}{4}\right)^2 = \left(\frac{24 - a}{4}\right)^2 = \frac{(24 - a)^2}{16} \) 5. **Combine the Variance Terms**: The variance becomes: \[ \sigma^2 = \frac{\frac{(8 - a)^2 + (16 - a)^2 + (3a - 16)^2 + (24 - a)^2}{16}}{4} \] Simplifying this gives: \[ \sigma^2 = \frac{(8 - a)^2 + (16 - a)^2 + (3a - 16)^2 + (24 - a)^2}{64} \] Setting this equal to \( 12.25 \): \[ \frac{(8 - a)^2 + (16 - a)^2 + (3a - 16)^2 + (24 - a)^2}{64} = 12.25 \] Multiplying both sides by \( 64 \): \[ (8 - a)^2 + (16 - a)^2 + (3a - 16)^2 + (24 - a)^2 = 784 \] 6. **Expand and Simplify**: Expanding each term: - \( (8 - a)^2 = 64 - 16a + a^2 \) - \( (16 - a)^2 = 256 - 32a + a^2 \) - \( (3a - 16)^2 = 9a^2 - 96a + 256 \) - \( (24 - a)^2 = 576 - 48a + a^2 \) Combining these gives: \[ 64 + 256 + 576 + (1 + 1 + 9 + 1)a^2 - (16 + 32 + 96 + 48)a = 784 \] \[ 896 + 12a^2 - 192a = 784 \] Rearranging gives: \[ 12a^2 - 192a + 112 = 0 \] 7. **Solve the Quadratic Equation**: Dividing through by 4: \[ 3a^2 - 48a + 28 = 0 \] Using the quadratic formula: \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{48 \pm \sqrt{(-48)^2 - 4 \cdot 3 \cdot 28}}{2 \cdot 3} \] \[ a = \frac{48 \pm \sqrt{2304 - 336}}{6} = \frac{48 \pm \sqrt{1968}}{6} \] Simplifying gives: \[ a = \frac{48 \pm 14\sqrt{2}}{6} \] 8. **Determine the Valid Options**: Based on the calculations, we can check which of the options provided is valid.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 74

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 76

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the standard deviation of the numbers 2,3,a and 11 is 3.5, then which of the following is true?

The mean deviation of the numbers 1,2,3,4,5 is

Consider three observations a, b and c such that b=a+c. If the standard deviation of a+2, b+2, c+2 is d, then which of the following is true ?

The standard deviation of data 6,5,9,13,12,8 and 10 is

If A={2,3,4,5,6} , Then which of the following is not true ?

The standard deviation of the first n natural numbers is

The standard deviation for first natural number is

NTA MOCK TESTS-NTA JEE MOCK TEST 75-MATHEMATICS
  1. The smallest positive integral value of a, such that the function f(x)...

    Text Solution

    |

  2. The value of Sigma(i=1)^(n)(.^(n+1)C(i)-.^(n)C(i)) is equal to

    Text Solution

    |

  3. If the integral int(0)^(2)(dx)/(sinx+sin(2-x))=A, then the integral be...

    Text Solution

    |

  4. If the reciprocals of 2, log((3^(x)-4))4 and log(3^(x)+(7)/(2))4 are i...

    Text Solution

    |

  5. From point P(4,0) tangents PA and PB are drawn to the circle S: x^2+y^...

    Text Solution

    |

  6. Consider a plane P:2x+y-z=5, a line L:(x-3)/(2)=(y+1)/(-3)=(z-2)/(-1) ...

    Text Solution

    |

  7. The number of triplets (a, b, c) of positive integers satisfying the e...

    Text Solution

    |

  8. The locus of the trisection point of any arbitrary double ordinate of ...

    Text Solution

    |

  9. If A={1,3,5,7,9,11,13,15}, B and N={2,4,……,16} is the universal set, t...

    Text Solution

    |

  10. Let f:(6, 8)rarr (9, 11) be a function defined as f(x)=x+[(x)/(2)] (wh...

    Text Solution

    |

  11. Let f(x+y)=f(x).f(y) for all x, y in R and f(x)=1+x phi(x)log3. If lim...

    Text Solution

    |

  12. If the standard deviation of the numbers 2, 4, a and 10 is 3.5, then w...

    Text Solution

    |

  13. The domain of the function f(x)=4sqrt(cos^(-1)((1-|x|)/(2))) is

    Text Solution

    |

  14. A word has 4 identical letters and rest all are distinct letters. If t...

    Text Solution

    |

  15. The integral I=int sec^(3)x tan^(3)xdx is equal to (where, C is the co...

    Text Solution

    |

  16. If omega is the imaginary cube roots of unity, then the number of p...

    Text Solution

    |

  17. If the area bounded by y+|x-pi|le pi and y ge (pi)/(2) is Kpi^(2) sq. ...

    Text Solution

    |

  18. If sqrt3 sin x+cosx-2=(y-1)^(2)" for "0lexle 8pi, then the number of v...

    Text Solution

    |

  19. The probability that a married man watches a certain T.V. show is 0.6 ...

    Text Solution

    |

  20. The value of lim(xrarr1)Sigma(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is eq...

    Text Solution

    |