Home
Class 12
MATHS
The distance of the roots of the equatio...

The distance of the roots of the equation `tan theta_(0) z^(n) + tan theta_(1) z^(n-1) + …+ tan theta_(n) = 3` from `z=0`, where `theta_(0) , theta_(1) , theta_(2),…, theta_(n) in [0, (pi)/(4)]` satisfy

A

greater than 2/3

B

less than 2/3

C

greater than `| cos theta_(1)|+|cos theta_(2)|+…+|cos theta_(n)|`

D

less than `| cos theta_(1)|+|cos theta_(2)|+…+|cos theta_(n)|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta_0 z^n + \tan \theta_1 z^{n-1} + \ldots + \tan \theta_n = 3 \) and find the distance of the roots from \( z = 0 \), we will follow these steps: ### Step 1: Understand the Equation The given equation is a polynomial in \( z \) with coefficients \( \tan \theta_k \) where \( \theta_k \) varies from \( 0 \) to \( \frac{\pi}{4} \). We need to analyze the roots of this polynomial. ### Step 2: Use the Triangle Inequality Using the triangle inequality for complex numbers, we know that: \[ |z_1 + z_2 + \ldots + z_n| \leq |z_1| + |z_2| + \ldots + |z_n| \] Applying this to our polynomial, we can write: \[ |\tan \theta_0 z^n + \tan \theta_1 z^{n-1} + \ldots + \tan \theta_n| \leq |\tan \theta_0| |z^n| + |\tan \theta_1| |z^{n-1}| + \ldots + |\tan \theta_n| \] ### Step 3: Analyze the Coefficients Since \( \theta_k \in [0, \frac{\pi}{4}] \), we have: \[ 0 \leq \tan \theta_k \leq 1 \] Thus, the coefficients \( \tan \theta_k \) are bounded between \( 0 \) and \( 1 \). ### Step 4: Set Up the Inequality From the equation, we have: \[ |\tan \theta_0 z^n + \tan \theta_1 z^{n-1} + \ldots + \tan \theta_n| = 3 \] So we can write: \[ 3 \leq |\tan \theta_0| |z^n| + |\tan \theta_1| |z^{n-1}| + \ldots + |\tan \theta_n| \] ### Step 5: Substitute Maximum Values Substituting the maximum values of \( \tan \theta_k \): \[ 3 \leq |z^n| + |z^{n-1}| + \ldots + |z| + 1 \] This is a geometric series with \( n+1 \) terms. The sum can be expressed as: \[ |z|^n + |z|^{n-1} + \ldots + |z| + 1 = \frac{|z|^{n+1} - 1}{|z| - 1} \quad \text{(for } |z| \neq 1\text{)} \] ### Step 6: Analyze the Limit as \( n \to \infty \) As \( n \) approaches infinity, we consider the case when \( |z| < 1 \): \[ 3 \leq \frac{|z|^{n+1} - 1}{|z| - 1} \] This implies that for large \( n \), the polynomial's roots must be such that: \[ |z| > \frac{2}{3} \] ### Step 7: Conclusion Thus, the distance of the roots from \( z = 0 \) must satisfy: \[ |z| > \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise EXERCISE 1|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise EXERCISE 2|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|20 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Prove that the distance of the roots of the equation |sin theta_(1)|z^(3)+|sin theta_(2)|z^(2)+|sin theta_(3)|z+|sin theta_(4)|=3 from z=0 is greater than 2/3.

((1+i tan theta)/(1-i tan theta))^(n)-(1+i tan n theta)/(1-i tan n theta)=

All the roots of equation z^n costgheta_0 +z^(n-1) costheta_1 +z^(n-2) costheta_2+…+costheta_n=2, when theta_0, theta_1, theta_2, ……theta_n epsilon R lie (A) on the line Re[(3+4i)z]=0 (B) inside the circel |z|=1/2 (C) outside the circle |z|= 1/2 (D) on the circle |z|= 1/2

zo is one of the roots of the equation z^(n)cos theta0+z^(n-1)cos theta2+......+z cos theta(n-1)+cos theta(n)=2, where theta in R, then (A)|z0| (1)/(2)(C)|z0|=(1)/(2)

Show that there is no complex number such that |z|le1/2 and z^(n)sin theta_(0)+z^(n-1)sintheta_(2)+....+zsintheta_(n-1)+ sintheta_(n)=2 where theta,theta_(1),theta_(2),……,theta_(n-1), theta_(n) are reals and n in Z^(+) .

If tan theta+sin theta=m and tan theta-sin theta=n

If cos(theta_(1)-(pi)/(4))+sin(theta_(2)+(pi)/(2))+cos(theta_(3)-(pi)/(3))+3=0 , then tan theta_(1)+tan theta_(2)+tan theta_(3) is: (where theta_(1),theta_(2),theta_(3)in(0,2 pi))

FIITJEE-COMPLEX NUMBER-SOLVED PROBLEMS (OBJECTIVE)
  1. If alpha is the angle which each side of a regular polygon of n sides ...

    Text Solution

    |

  2. If the imaginery part of (z-3)/(e^(itheta))+(e^(itheta))/(z-3) is zero...

    Text Solution

    |

  3. The distance of the roots of the equation tan theta(0) z^(n) + tan the...

    Text Solution

    |

  4. The complex numbers z=x+iy which satisfy the equation |(z-5i)/(z+5i)|=...

    Text Solution

    |

  5. The inequality |z-4| lt |z-2| represents

    Text Solution

    |

  6. If the equation |z-z1|^2 + |z-z2|^2 =k, represents the equation of a c...

    Text Solution

    |

  7. If |z|= "min" {|z-1|, |z+1|}, then

    Text Solution

    |

  8. The range of m for which the line z(1-mi) - bar(z) (1+mi)=0 divides tw...

    Text Solution

    |

  9. Let P(k)(k=1,2,…n) be the nth root of unity. Let z =a +ib and A(k) = R...

    Text Solution

    |

  10. A complex number z is rotated in anticlockwise direction by an angle ...

    Text Solution

    |

  11. one vertex of the triangle of maximum area that can be inscribed in th...

    Text Solution

    |

  12. Let 'z' be a complex number and 'a' be a real parameter such that z^2+...

    Text Solution

    |

  13. Roots of the equation x^n - 1 = 0, n in I

    Text Solution

    |

  14. Let z(1) and z(2) be complex numbers such that z(1)^(2)-4z(2)=16+20i a...

    Text Solution

    |

  15. Let z(1) and z(2) be complex numbers such that z(1)^(2)-4z(2)=16+20i a...

    Text Solution

    |

  16. Let z1 and z2 be complex numbers such that z(1)^(2) - 4z(2) = 16+20i a...

    Text Solution

    |

  17. The locus of any point P(z) on argand plane is arg((z-5i)/(z+5i))=(pi)...

    Text Solution

    |

  18. The locus of any point P (z) on argand plane is "arg" ((z+5i)/(z-5i))=...

    Text Solution

    |

  19. If |z- z1|^2 + |z-z-2|^2 = |z1 - z2|^2 represents a conic C, then for...

    Text Solution

    |

  20. Let a be the real number, Real part of (19+7i)/(9-i) + (20+5i)/(7+6i) ...

    Text Solution

    |