Home
Class 12
MATHS
If |z|= "min" {|z-1|, |z+1|}, then...

If `|z|= "min" {|z-1|, |z+1|}`, then

A

`|z+ bar(z)|=(1)/(2)`

B

`z + bar(z) =1`

C

`|z + bar(z) | =1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( |z| = \min \{ |z - 1|, |z + 1| \} \), we will analyze the conditions under which the modulus of \( z \) is minimized compared to the moduli of \( z - 1 \) and \( z + 1 \). ### Step-by-Step Solution: 1. **Understanding the Condition**: We need to find the points \( z \) in the complex plane such that the modulus of \( z \) is the minimum of the distances from \( z \) to the points 1 and -1 on the real axis. 2. **Setting Up the Equations**: We can express \( z \) in terms of its real and imaginary parts: \[ z = x + iy \] where \( x \) is the real part and \( y \) is the imaginary part. 3. **Expressing the Moduli**: The moduli can be expressed as: \[ |z| = \sqrt{x^2 + y^2} \] \[ |z - 1| = |(x - 1) + iy| = \sqrt{(x - 1)^2 + y^2} \] \[ |z + 1| = |(x + 1) + iy| = \sqrt{(x + 1)^2 + y^2} \] 4. **Setting Up the Equations**: Since \( |z| \) is the minimum of \( |z - 1| \) and \( |z + 1| \), we consider two cases: - Case 1: \( |z| = |z - 1| \) - Case 2: \( |z| = |z + 1| \) 5. **Case 1: \( |z| = |z - 1| \)**: \[ \sqrt{x^2 + y^2} = \sqrt{(x - 1)^2 + y^2} \] Squaring both sides: \[ x^2 + y^2 = (x - 1)^2 + y^2 \] Simplifying: \[ x^2 = x^2 - 2x + 1 \] \[ 2x = 1 \implies x = \frac{1}{2} \] 6. **Case 2: \( |z| = |z + 1| \)**: \[ \sqrt{x^2 + y^2} = \sqrt{(x + 1)^2 + y^2} \] Squaring both sides: \[ x^2 + y^2 = (x + 1)^2 + y^2 \] Simplifying: \[ x^2 = x^2 + 2x + 1 \] \[ 0 = 2x + 1 \implies x = -\frac{1}{2} \] 7. **Conclusion**: From the two cases, we find that \( x \) can be either \( \frac{1}{2} \) or \( -\frac{1}{2} \). Thus, the real part of \( z \) can take these values, while the imaginary part \( y \) can be any real number. 8. **Final Result**: Therefore, the points \( z \) that satisfy the original condition are: \[ z = \frac{1}{2} + iy \quad \text{or} \quad z = -\frac{1}{2} + iy \quad \text{for any } y \in \mathbb{R} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise EXERCISE 1|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise EXERCISE 2|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|20 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If |z-3| = "min" {|z-1|,|z-5|} , then Re(z) equals to

If |z-2|= "min" {|z-1|,|z-3|} , where z is a complex number, then

If |z-3|=min{|z-1|,|z-5|} , then Re(z) equals to

If |z|=min(|z-1|,|z+1|}, where z is the complex number and f be a one -one function from {a,b,c} to {1,2,3} and f(a)=1 is false, f(b)!=1 is false and f(c)!=2 is true then |z+barz|= (A) f(a) (B) f(c) (C) 1/2f(a) (D) f(b)

If |z-2|=min{|z-1|,|z-5|}, where z is a complex number then

If |z+4i|=min{|z+3i|,|z+5i|, then z satisfies Im z=-(7)/(2)

If |z|=1 and z'=(1+z^(2))/(z) , then

If z_(1), lies in |z-3|<=4,z_(2) on |z-1|+|z+1|=3 and A=|z_(1)-z_(2)| then :

If |z_(1)|=15adn|z_(2)-3-4i|=5, then a.(|z_(1)-z_(2)|)_(min)=5b*(|z_(1)-z_(2)|)_(min)=10c(|z_(1)-z_(2)|)_(max)=20d.(|z_(1)-z_(2)|)_(max)=25

FIITJEE-COMPLEX NUMBER-SOLVED PROBLEMS (OBJECTIVE)
  1. The inequality |z-4| lt |z-2| represents

    Text Solution

    |

  2. If the equation |z-z1|^2 + |z-z2|^2 =k, represents the equation of a c...

    Text Solution

    |

  3. If |z|= "min" {|z-1|, |z+1|}, then

    Text Solution

    |

  4. The range of m for which the line z(1-mi) - bar(z) (1+mi)=0 divides tw...

    Text Solution

    |

  5. Let P(k)(k=1,2,…n) be the nth root of unity. Let z =a +ib and A(k) = R...

    Text Solution

    |

  6. A complex number z is rotated in anticlockwise direction by an angle ...

    Text Solution

    |

  7. one vertex of the triangle of maximum area that can be inscribed in th...

    Text Solution

    |

  8. Let 'z' be a complex number and 'a' be a real parameter such that z^2+...

    Text Solution

    |

  9. Roots of the equation x^n - 1 = 0, n in I

    Text Solution

    |

  10. Let z(1) and z(2) be complex numbers such that z(1)^(2)-4z(2)=16+20i a...

    Text Solution

    |

  11. Let z(1) and z(2) be complex numbers such that z(1)^(2)-4z(2)=16+20i a...

    Text Solution

    |

  12. Let z1 and z2 be complex numbers such that z(1)^(2) - 4z(2) = 16+20i a...

    Text Solution

    |

  13. The locus of any point P(z) on argand plane is arg((z-5i)/(z+5i))=(pi)...

    Text Solution

    |

  14. The locus of any point P (z) on argand plane is "arg" ((z+5i)/(z-5i))=...

    Text Solution

    |

  15. If |z- z1|^2 + |z-z-2|^2 = |z1 - z2|^2 represents a conic C, then for...

    Text Solution

    |

  16. Let a be the real number, Real part of (19+7i)/(9-i) + (20+5i)/(7+6i) ...

    Text Solution

    |

  17. Let A = (cos alpha, sin alpha), B = (cos beta , sin beta), C = (cos g...

    Text Solution

    |

  18. Minimum value of |z1 + 1 | + |z2 + 1 | + |z 1 z 2 + 1 | i...

    Text Solution

    |

  19. If Z1 , Z2 be two non zero complex numbers satisfying the equation |(Z...

    Text Solution

    |

  20. Match the equation given in List - I to the curve, it represents on ...

    Text Solution

    |