Home
Class 12
MATHS
Let A = (cos alpha, sin alpha), B = (co...

Let ` A = (cos alpha, sin alpha), B = (cos beta , sin beta), C = (cos gamma, sin gamma)`. If origin is the orthocentre of the `Delta ABC`, then the value of `sum cos (2 alpha - beta - gamma)=`____________

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    FIITJEE|Exercise EXERCISE 1|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise EXERCISE 2|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|20 Videos
  • CIRCLE

    FIITJEE|Exercise Numerical Based|2 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Delta ABC has vertices A(a cos alpha,a sin alpha),B(a cos beta,a sin beta) and C(a cos gamma,a sin gamma) then its orthocentre is

P(cos alpha,sin alpha),Q(cos beta,sin beta),R(cos gamma,sin gamma) are vertices of triangle whose orthocenter is (0,0) then the value of cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha) is

If A=(cos alpha,sin alpha,0), B=(cos beta,sin beta,0),C=(cos gamma,sin gamma,0) are vertices of Delta ABC and cos alpha+cos beta+cos gamma=3a, sin alpha+sin beta+sin gamma=3b then orthocentre is

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

The orthocentre of triangle formed by (a cos alpha,a sin alpha),(a cos beta,a sin beta),(a cos gamma,a sin gamma) is

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC is

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC=

If cos alpha, cos beta, cos gamma are the direction cosines of a line then the value of sin^(2) alpha + sin^(2) beta + sin^(2) gamma is__________

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

FIITJEE-COMPLEX NUMBER-SOLVED PROBLEMS (OBJECTIVE)
  1. Let P(k)(k=1,2,…n) be the nth root of unity. Let z =a +ib and A(k) = R...

    Text Solution

    |

  2. A complex number z is rotated in anticlockwise direction by an angle ...

    Text Solution

    |

  3. one vertex of the triangle of maximum area that can be inscribed in th...

    Text Solution

    |

  4. Let 'z' be a complex number and 'a' be a real parameter such that z^2+...

    Text Solution

    |

  5. Roots of the equation x^n - 1 = 0, n in I

    Text Solution

    |

  6. Let z(1) and z(2) be complex numbers such that z(1)^(2)-4z(2)=16+20i a...

    Text Solution

    |

  7. Let z(1) and z(2) be complex numbers such that z(1)^(2)-4z(2)=16+20i a...

    Text Solution

    |

  8. Let z1 and z2 be complex numbers such that z(1)^(2) - 4z(2) = 16+20i a...

    Text Solution

    |

  9. The locus of any point P(z) on argand plane is arg((z-5i)/(z+5i))=(pi)...

    Text Solution

    |

  10. The locus of any point P (z) on argand plane is "arg" ((z+5i)/(z-5i))=...

    Text Solution

    |

  11. If |z- z1|^2 + |z-z-2|^2 = |z1 - z2|^2 represents a conic C, then for...

    Text Solution

    |

  12. Let a be the real number, Real part of (19+7i)/(9-i) + (20+5i)/(7+6i) ...

    Text Solution

    |

  13. Let A = (cos alpha, sin alpha), B = (cos beta , sin beta), C = (cos g...

    Text Solution

    |

  14. Minimum value of |z1 + 1 | + |z2 + 1 | + |z 1 z 2 + 1 | i...

    Text Solution

    |

  15. If Z1 , Z2 be two non zero complex numbers satisfying the equation |(Z...

    Text Solution

    |

  16. Match the equation given in List - I to the curve, it represents on ...

    Text Solution

    |

  17. if an equilateral triangle ABC with vertices at z1, z2 and z3 be inscr...

    Text Solution

    |

  18. Which of the following options is the only CORRECT combination ?

    Text Solution

    |

  19. Which of the following options is the only CORRECT combination ?

    Text Solution

    |

  20. Which of the following options is the only INCORRECT combination ?

    Text Solution

    |